Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076801    DOI: 10.1088/1674-1056/24/7/076801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Unusual structural properties of polymers confined in a nanocylinder

Jiang Zhi-Bin (江志斌)a b c, Peng Meng-Jie (彭梦杰)a b c, Li Lin-Ling (李林玲)a b c, Zhou Dong-Shan (周东山)a b c, Wang Rong (汪蓉)a b c, Xue Gi (薛奇)a b c
a Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
b Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Nanjing University, Nanjing 210093, China;
c State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Abstract  

Structural properties of polymers confined in nanocylinders are investigated by Monte Carlo simulation, which is successfully used to consider the conformational property of constrained polymers. The conformational properties of the polymers close to the walls exhibit different features. The density profiles of polymers are enhanced near the wall of the nanocylinder, which shows that the packing densities differ near the wall and far from the wall. The highest densities near the wall of the nanocylinder decrease with increasing radius of the nanocylinder. Furthermore, the density excess is not only near the wall of the nanocylinder, but also shifts to the center of the nanocylinder at lower temperatures. The radius of gyration and the bond length of polymers in the nanocylinder show that the polymer chains tend to extend along the axis of the nanocylinder in highly confined nanocylinder and contract at lower temperature. Our results are very helpful in understanding the packing induced physical behaviors of polymers in nanocylinders, such as glass transition, crystallization, etc.

Keywords:  polymer      confinement      nanocylinder      structural property  
Received:  13 January 2015      Revised:  02 April 2015      Accepted manuscript online: 
PACS:  68.35.bm (Polymers, organics)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21474051, 21074053, and 51133002), the National Basic Research Program of China (Grant No. 2012CB821503), and the Program for Changjiang Scholars and Innovative Research Team in University, China.

Corresponding Authors:  Wang Rong, Xue Gi     E-mail:  wangrong@nju.edu.cn;xuegi@nju.edu.cn

Cite this article: 

Jiang Zhi-Bin (江志斌), Peng Meng-Jie (彭梦杰), Li Lin-Ling (李林玲), Zhou Dong-Shan (周东山), Wang Rong (汪蓉), Xue Gi (薛奇) Unusual structural properties of polymers confined in a nanocylinder 2015 Chin. Phys. B 24 076801

[1] Rittigstein P, Priestley R D, Broadbelt L J and Torkelson J M 2007 Nat. Mater. 6 278
[2] Bansal A, Yang H C, Li C Z, Cho K W, Benicewicz B C, Kumar S K and Schadler L S 2005 Nat. Mater. 4 693
[3] Shin K, Obukhov S, Chen J T, Huh J, Hwang Y, Mok S, Dobriyal P, Thiyagarajan P and Russell T P 2007 Nat. Mater. 6 961
[4] Qing J, Zhong Z F, Liu Y, Li B J and Zhou X 2014 Chin. Phys. B 23 038802
[5] Wang R, Egorov S A, Milchev A and Binder K 2012 Macromolecules 45 2580
[6] Wang R, Virnau P and Binder K 2010 Macromol. Theor. Simul. 19 258
[7] Li L, Zhou D, Huang D and Xue G 2014 Macromolecules 47 297
[8] Li L, Wang X, Zhou D, Teng C, Sun Q and Xue G 2014 Macromolecules 47 2131
[9] Zhu L, Wang X, Gu Q, Chen W, Sun P and Xue G 2013 Macromolecules 46 2292
[10] Baschnagel J and Binder K 1995 Macromolecules 28 6808
[11] Baschnagel J and Varnik F 2005 J. Phys.-Condense Matter 17 R851
[12] Xia W, Mishra S and Keten S 2013 Polymer 54 5942
[13] Chen J, Xu J, Wang X, Zhou D, Sun P and Xue G 2013 Macromolecules 46 7006
[14] Napolitano S, Pilleri A, Rolla P and Wuebbenhorst M 2010 ACS Nano 4 841
[15] Rotella C, Wubbenhorst M and Napolitano S 2011 Soft Matter 7 5260
[16] Wang R, Zhang S and Qiu Y 2011 Polymer 52 586
[17] Jiang Z B, Wang R and Xue G 2009 Chin. J. Polym. Sci. 27 583
[18] Zhou J and Shi A C 2014 J. Chem. Phys. 140 024903
[19] Jiang Z B, Xu C, Qiu Y D, Wang X L, Xue G and Zhou D S 2014 Nanoscale Res. Lett. 9 359
[20] Wang R, Chen Y L, Hu J L and Xue G 2008 J. Chem. Phys. 129 044907
[21] Wang R, Jiang Z B, Chen Y L and Xue G 2006 J. Phys. Chem. B 110 22726
[22] Yang H, Chen X C, Jun G R and Green P F 2013 Macromolecules 46 5036
[23] Noirez L, Stillings C, Bardeau J F, Steinhart M, Schlitt S, Wendorff J H and Pepy G 2013 Macromolecules 46 4932
[24] Kremer F, Huwe A, Arndt M, Behrens P and Schwieger W 1999 J. Phys.-Condens. Matter 11 A175
[25] Forrest J A, DalnokiVeress K and Dutcher J R 1997 Phys. Rev. E 56 5705
[26] Wallace W E, Vanzanten J H and Wu W L 1995 Phys. Rev. E 52 R3329
[27] Pi X D, Wang R and Yang D R 2014 Chin. Phys. B 23 076102
[28] Kreer T, Metzger S, Muller M, Binder K and Baschnagel J 2004 J. Chem. Phys. 120 4012
[29] Metzger S, Muller M, Binder K and Baschnagel J 2002 Macromol. Theor. Simul. 11 985
[30] Paul W, Binder K, Heermann D W and Kremer K 1991 J. De Physique II 1 37
[31] Hu J L, Wang R and Xue G 2006 J. Phys. Chem. B 110 1872
[32] Duan F L and Wang Y 2014 Acta Phys. Sin. 63 136102 (in Chinese)
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[3] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[4] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[5] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[6] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[7] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[8] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[9] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[10] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[11] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[12] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[13] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[14] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[15] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
No Suggested Reading articles found!