CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb |
Luo Xiao-Ning (罗肖宁)a b, Dong Cheng (董成)b, Liu Shi-Kai (刘世凯)a, Zhang Zi-Ping (张子平)a, Li Ao-Lei (李傲雷)b, Yang Li-Hong (杨立红)b, Li Xiao-Chuan (李晓川)b |
a School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
b National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report the results of low temperature resistivity and magnetization measurements on polycrystalline samples of four Ni–Sb compounds, Ni3Sb, Ni5Sb2, NiSb, and NiSb2. Resistivity measurements revealed that these compounds exhibit a metallic type of electrical conductivity. Temperature dependences of the resistivities were well fitted by the generalized Bloch–Grüneisen formula with an exponent of n=3, indicating that the s–d interband scattering is the dominant scattering mechanism. The magnetic susceptibilities of Ni5Sb2, NiSb, and NiSb2 are almost independent of temperature (above 150 K), exhibiting Pauli paramagnetic behavior. The temperature dependences of the susceptibilities were fitted using the Curie–Weiss law. Ni3Sb was found to have a paramagnetic–ferromagnetic phase transition at 229 K. First-principles calculations have been performed to investigate the electronic structures and physical properties of these Ni–Sb alloys. The calculation of the band structure predicted that Ni3Sb, Ni5Sb2, NiSb, and NiSb2 have characteristics of metal, and the ground state of Ni3Sb is ferromagnetic. The electrical and magnetic properties observed experimentally are consistent with that predicted by the first-principle electronic structure calculations.
|
Received: 19 January 2015
Revised: 06 February 2015
Accepted manuscript online:
|
PACS:
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
75.20.En
|
(Metals and alloys)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21271183) and the National Basic Research Program of China (Grant Nos. 2011CBA00112 and 2011CB808202). |
Corresponding Authors:
Dong Cheng
E-mail: chengdon@aphy.iphy.ac.cn
|
About author: 72.15.Eb; 75.20.En; 71.20.Be |
Cite this article:
Luo Xiao-Ning (罗肖宁), Dong Cheng (董成), Liu Shi-Kai (刘世凯), Zhang Zi-Ping (张子平), Li Ao-Lei (李傲雷), Yang Li-Hong (杨立红), Li Xiao-Chuan (李晓川) Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb 2015 Chin. Phys. B 24 067201
|
[1] |
Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Vandover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252
|
[2] |
Sinha S, Lynn J, Grigereit T, Hossain Z, Gupta L, Nagarajan R and Godart C 1995 Phys. Rev. B 51 681
|
[3] |
He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S, Inumara K, Zandbergen H W, Ong N P and Cava R J 2001 Nature 411 54
|
[4] |
Uehara M, Yamazaki T, Kôri T, Kashida T, Kimishima Y and Hase I 2007 J. Phys. Soc. Jpn. 76 034714
|
[5] |
Uehara M, Uehara A, Kozawa K and Kimishima Y 2009 J. Phys. Soc. Jpn. 78 033702
|
[6] |
He B, Dong C, Yang L H, Chen X C, Ge L H, Mu L B and Shi Y G 2013 Supercond. Sci. Technol. 26 125015
|
[7] |
Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M and Hosono H 2007 Inorg. Chem. 46 7719
|
[8] |
Tegel M, Bichler D and Johrendt D 2008 Solid State Sci. 10 193
|
[9] |
Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M and Hosono H 2008 J. Solid State Chem. 181 2117
|
[10] |
Buckow A, Retzlaff R, Kurian J and Alff L 2012 Phys. Procedia 27 300
|
[11] |
Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
|
[12] |
Kodama K, Wakimoto S, Igawa N, Shamoto S, Mizoguchi H and Hosono H 2011 Phys. Rev. B 83 214512
|
[13] |
Kurian J, Buckow A, Retzlaff R and Alff L 2013 Physica C 484 171
|
[14] |
Flandorfer H, Sologub O, Godart C, Hiebl K, Rogl P and Ndl H 1996 Solid State Commun. 97 561
|
[15] |
Matthias B T 1953 Phys. Rev. 92 874
|
[16] |
Fujimori Y, Kan S I, Shinozaki B and Kawaguti T 2000 J. Phys. Soc. Jpn. 69 3017
|
[17] |
Vassilev G P R J and Wnuk G 2007 Int. J. Mater. Res. 98 468
|
[18] |
Zhang Y, Li C, Du Z and Guo C 2008 Calphad 32 378
|
[19] |
Minić D, Manasijević D, Ćsovic V, Todorović A, Dervišević I, Živković D and Dokić J 2011 Calphad 35 308
|
[20] |
Le Clanche M C, Députier S, Jégaden J C, Guérin R, Ballini Y and Guivarc'h A 1994 J. Alloys Compd. 206 21
|
[21] |
Heinrich S, Rexer H U and Schubert K 1978 J. Less Common Met. 60 65
|
[22] |
Naud J and Parijs D 1972 Mater. Res. Bull. 7 301
|
[23] |
Randl O G, Vogl G, Kaisermayr M, Buhrer W, Petry W and Pannetier J 1996 J. Phys.: Condens. Matter 8 7689
|
[24] |
Villevieille C, Ionica-Bousquet C M, Ducourant B, Jumas J C and Monconduit L 2007 J. Power Sources 172 388
|
[25] |
Yang Y W, Li T Y, Liu F, Zhu W B, Li X L, Wu Y C and Kong M G 2013 Microelectron. Eng. 104 1
|
[26] |
Xie J, Zhao X B, Yu H M, Qi H, Cao G S and Tu J P 2007 J. Alloys Compd. 441 231
|
[27] |
Xie J, Zhao X B, Cao G S, Zhao M J and Su S F 2005 J. Alloys Compd. 393 283
|
[28] |
Chen T, Rogowski D and White R 1978 J. Appl. Phys. 49 1425
|
[29] |
Kobayashi H, Kageshima M, Kimura N, Aoki H, Oohigashi M, Motizuki K and Kamimura T 2004 J. Magn. Magn. Mater. 272 E247
|
[30] |
Liu K G, Ji N J and Ma Z Q 2012 Adv. Mater. Res. 503 507
|
[31] |
Li C, Hu J, Peng Q and Wang X 2008 Mater. Chem. Phys. 110 106
|
[32] |
Dong C 1999 J. Appl. Crystallogr. 32 838
|
[33] |
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
|
[34] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 18
|
[35] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[36] |
Hamann D, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
|
[37] |
Naud J and Parijs D 1972 Mater. Res. Bull. 4 301
|
[38] |
Le Clanche M C, Deputier S, Jégaden J C, Guérin R, Ballini Y and Givarch A 1994 J. Alloys Compd. 206 21
|
[39] |
Holseth H and Kjekshus A 1968 Acta Chem. Scand. 22 3273
|
[40] |
Wilson A 1938 Proc. Roy. Soc. Lond. A 167 580
|
[41] |
Webb G W 1969 Phys. Rev. 181 1127
|
[42] |
Babizhetskyy V, Kotur B, Oryshchyn S, Zheng C, Kneidinger F, Leber L, Simson C, Bauer E and Michor H 2013 Solid State Commun. 164 1
|
[43] |
Zeppenfeld K and Jerrschko W 1993 J. Phys. Chem. Solids 54 1527
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|