Special Issue:
TOPICAL REVIEW — III-nitride optoelectronic materials and devices
|
TOPICAL REVIEW—III-nitride optoelectronic materials and devices |
Prev
Next
|
|
|
Design of patterned sapphire substrates for GaN-based light-emitting diodes |
Wang Hai-Yan (王海燕)a, Lin Zhi-Ting (林志霆)a, Han Jing-Lei (韩晶磊)a, Zhong Li-Yi (钟立义)a, Li Guo-Qiang (李国强)a b |
a State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China;
b Department of Electronic Materials, South China University of Technology, Guangzhou 510641, China |
|
|
Abstract A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.
|
Received: 13 February 2015
Revised: 28 March 2014
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Fundation for Excellent Young Scholars of China (Grant No. 51422203), the National Natural Science Foundation of China (Grant No. 51372001), the Outstanding Youth Foundation of Guangdong Scientific Committee (Grant No. S2013050013882), and the Strategic Special Funds for LEDs of Guangdong Province, China (Grant Nos. 2011A081301010, 2011A081301012, 2012A080302002, and 2012A080302004). |
Corresponding Authors:
Li Guo-Qiang
E-mail: msgli@scut.edu.cn
|
About author: 71.55.Eq; 78.30.Fs |
Cite this article:
Wang Hai-Yan (王海燕), Lin Zhi-Ting (林志霆), Han Jing-Lei (韩晶磊), Zhong Li-Yi (钟立义), Li Guo-Qiang (李国强) Design of patterned sapphire substrates for GaN-based light-emitting diodes 2015 Chin. Phys. B 24 067103
|
[1] |
Pimputkar S, Speck J S, Denbaars S P and Nakamura S 2009 Nat. Photon. 3 180
|
[2] |
Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y and Zheng Y D 2011 Chin. Phys. B 20 116801
|
[3] |
Liu M G, Wang Y Q, Yang Y B, Lin X Q, Xiang P, Chen W J, Han X B, Zang W J, Liao Q, Lin J L, Luo H, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 038503
|
[4] |
Liu L and Edgar J H 2002 Mater. Sci. Eng. R: Reports 37 61
|
[5] |
Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, Denbaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
|
[6] |
Nakamura S 1998 Science 281 956
|
[7] |
Zhmakin A I 2011 Phys. Rep. 498 189
|
[8] |
Benisty H, De Neve H and Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612
|
[9] |
Hiramatsu K, Nishiyama K, Onishi M, Mizutani H, Narukawa M, Motogaito A, Miyake H, Iyechika Y and Maeda T 2000 J. Cryst. Growth 221 316
|
[10] |
Marchand H, Wu X H, Ibbetson J P, Fini P T, Kozodoy P, Keller S, Speck J S, Denbaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 747
|
[11] |
Hiramatsu K, Nishiyama K, Motogaito A, Miyake H, Iyechika Y and Maeda T 1999 Phys. Solidi State A 176 535
|
[12] |
Le L C, Zhao D G, Wu L L, Deng Y, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Zhang B S and Yang H 2011 Chin. Phys. B 20 127306
|
[13] |
Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C and Chang C Y 2011 Appl. Phys. Lett. 99 171106
|
[14] |
Kuo Y, Chang J, Tsai M and Yen S 2009 Appl. Phys. Lett. 95 11116
|
[15] |
Huang X H, Liu J P, Fan Y M, Kong J J, Yang H and Wang H B 2012 Chin. Phys. B 21 037105
|
[16] |
Ashby C I H, Mitchell C C, Han J, Missert N A, Provencio P P, Follstaedt D M, Peake G M and Griego L 2000 Appl. Phys. Lett. 77 3233
|
[17] |
Nakada N, Nakaji M, Ishikawa H, Egawa T, Umeno M and Jimbo T 2000 Appl. Phys. Lett. 76 1804
|
[18] |
David A, Meier C, Sharma R, Diana F S, Denbaars S P, Hu E, Nakamura S, Weisbuch C and Benisty H 2005 Appl. Phys. Lett. 87 101107
|
[19] |
He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101
|
[20] |
Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S and Krames M R 2006 Appl. Phys. Lett. 89 71109
|
[21] |
Lester S D, Ponce F A, Craford M G and Steigerwald D A 1995 Appl. Phys. Lett. 66 1249
|
[22] |
Dai Q, Schubert M F, Kim M H, Kim J K, Schubert E F, Koleske D D, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2009 Appl. Phys. Lett. 94 111109
|
[23] |
Wang M, Liao K and Li Y L 2011 IEEE Photon. Technol. Lett. 23 962
|
[24] |
Pan C, Hsieh C, Lin C and Chyi J 2007 J. Appl. Phys. 102 84503
|
[25] |
Belardini A, Pannone F, Leahu G, Larciprete M C, Centini M, Sibilia C, Martella C, Giordano M, Chiappe D and Buatier De Mongeot F 2012 Appl. Phys. Lett. 100 251109
|
[26] |
Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
|
[27] |
Jiang Y, Jia H, Wang W, Wang L and Chen H 2011 Energy Environ. Sci. 4 2625
|
[28] |
Torma P T, Ali M, Svensk O, Suihkonen S, Sopanen M, Lipsanen H, Mulot M, Odnoblyudov M A and Bougrov V E 2010 CrystEngComm 12 3152
|
[29] |
Gao H, Yan F, Zhang Y, Li J, Zeng Y and Wang G 2008 Solid State Electron. 52 962
|
[30] |
Bo Lee S, Kwon T, Lee S, Park J and Choi W 2011 Appl. Phys. Lett. 99 211901
|
[31] |
Zhou S, Lin Z, Wang H, Qiao T, Zhong L, Lin Y, Wang W, Yang W and Li G 2014 J. Alloys Compd. 610 498
|
[32] |
Zhou S, Wang H, Lin Z, Yang H, Hong X and Li G 2014 Jpn. J. Appl. Phys. 53 25503
|
[33] |
Lee J, Lee D, Oh B and Lee J 2010 IEEE Trans. Electron Dev. 57 157
|
[34] |
Cheng J, Wu Y S, Liao W and Lin B 2010 Appl. Phys. Lett. 96 51109
|
[35] |
Hagedorn S, Richter E, Zeimer U, Prasai D, John W and Weyers M 2012 J. Cryst. Growth 353 129
|
[36] |
Cho J, Kim H, Kim H, Lee J W, Yoon S, Sone C, Park Y and Yoon E 2005 Phys. Status Solidi C 2 2874
|
[37] |
Lee J, Oh J, Park J, Kim J, Kim Y, Lee J and Cho H 2006 Phys. Status Solidi c 3 2169
|
[38] |
Jeong S, Kissinger S, Kim D, Jae Lee S, Kim J, Ahn H and Lee C 2010 J. Cryst. Growth 312 258
|
[39] |
Shin H, Kwon S K, Chang Y I, Cho M J and Park K H 2009 J. Cryst. Growth 311 4167
|
[40] |
Lee J, Oh J T, Kim Y C and Lee J 2008 IEEE Photon. Technol. Lett. 20 1563
|
[41] |
Xu S R, Li P X, Zhang J C, Jiang T, Ma J J, Lin Z Y and Hao Y 2014 J. Alloys Compd. 614 360
|
[42] |
Lin Z, Yang H, Zhou S, Wang H, Hong X and Li G 2012 Cryst. Growth Des. 12 2836
|
[43] |
Wang H, Zhou S, Lin Z, Hong X and Li G 2013 Jpn. J. Appl. Phys. 52 92101
|
[44] |
Wang H, Zhou S, Lin Z, Qiao T, Zhong L, Wang K, Hong X and Li G 2014 RSC Adv. 4 41942
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|