Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 066104    DOI: 10.1088/1674-1056/24/6/066104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Room temperature damping correlated to the microstructures in Cu-20.4Al-8.7Mn

Hao Gang-Ling (郝刚领)a, Wang Xin-Fu (王新福)b, Wang Hui (王辉)c, Li Xian-Yu (李先雨)a
a College of Physics and Electronic Information, Yan'an University, Yan'an 716000, China;
b Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
c State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The damping capacity of the shape memory alloy Cu–20.4Al–8.7Mn (at.%) at room temperature is investigated by an internal friction technique. Results indicate that the alloy exhibits higher damping capacity in the Martensitic condition than that in the austenitic condition due to the latter having lower intrinsic damping capacity and pinning effect coming from the precipitate particles. The maximum damping capacity is obtained in the coexistence condition of Martensite and austenite. The condition can be achieved when processing an isothermal ageing for the as-cast sample at temperatures of 100 ℃–150 ℃. Three possible mechanisms are considered to account for the maximum damping capacity. They are listed as much increased interfaces between twin boundaries, owing to the thinning of martensitic plates, martensitic transformation induced by the applied stress during internal friction measurements, phase transformation itself based on the coexistence of martensitic and austenitic phases with a macroscopic amount. However, the contribution of the first mechanism is predominant.
Keywords:  internal friction      damping      shape memory alloy      microstructure  
Received:  19 October 2014      Revised:  23 January 2015      Accepted manuscript online: 
PACS:  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  61.72.Mm (Grain and twin boundaries)  
  61.66.Dk (Alloys )  
  81.30.Kf (Martensitic transformations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51301150), the Special Program of Science and Technology New Star of Shaanxi Province, China (Grant No. 2013KJXX-11), and the High-level University Construction Special Program of Shaanxi Province, China (Grant No. Physics-2012SXTS05).
Corresponding Authors:  Hao Gang-Ling     E-mail:  glhao@issp.ac.cn
About author:  61.72.Hh; 61.72.Mm; 61.66.Dk; 81.30.Kf

Cite this article: 

Hao Gang-Ling (郝刚领), Wang Xin-Fu (王新福), Wang Hui (王辉), Li Xian-Yu (李先雨) Room temperature damping correlated to the microstructures in Cu-20.4Al-8.7Mn 2015 Chin. Phys. B 24 066104

[1] Lavernia E J, Perez R J and Zhang J 1995 Metall. Mater. Trans. A 26 2803
[2] Liu H, Wang X P, Zhang T, Cheng Z J and Fang Q F 2009 Materials 2 958
[3] Zhang J M, Robert J P, Catherine R W and Enrique J L 1994 Mater. Sci. Eng. R 13 325
[4] Golovin I S 2006 Key Eng. Mater. 319 225
[5] Mallik U S and Sampath V 2008 Mater. Sci. Eng. A 478 48
[6] Mielczarek A, Kopp N and Riehemann W 2009 Mater. Sci. Eng. A 521-522 182
[7] Jiao Y Q, Wen Y H, Li N, He J Q and Teng J 2010 J. Alloys Compd. 491 627
[8] Zheng C Q and Chen X N 2004 Foundry 53 984
[9] Han F S, Zhu Z G, Liu C S and Gao J C 1999 Metall. Mater. Trans. A 30 771
[10] Wang Q Z, Han F S and Cui C X 2010 J. Alloys Compd. 492 286
[11] Hao G L, Xu Q P, Wang H and Wang W G 2013 Phys. Stat. Sol. a 210 814
[12] Wang Q Z, Lu D M and Cui C X 2008 Acta Phys. Sin. 57 7083 (in Chinese)
[13] Wang Q Z, Han F S and Wang Q 2004 Phys. Stat. Sol. a 201 2910
[14] Li Z, Wang M P and Xu G Y 2010 Materials of Cu-Based Shape-Memory Alloys (Changsha, Central South University Press)
[15] Blanter M S, Golovin I S, Neuhäuser H and Sinning H R 2007 Internal Friction in Metallic Materials: A Handbook (Berlin/Heidelberg: Springer-Verlag)
[16] San Juan J and Nó M L 2003 J. Alloys Compd. 355 65
[17] Kustov S, Van Humbeeck J and De Batist R 1995 Scripta Metallurgica Et Materia 33 1401
[18] Bidaux J E, Schaller R and Benoit W 1989 Acta Metall. 37 803
[19] Haasen P 1991 Phase Transformations in Materials (Weinheim: VCH)
[20] Otsuka K and Wayman C M (eds.) 1998 Shape Memory Materials (Cambridge: Cambridge University Press)
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[9] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[10] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[13] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[14] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[15] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
No Suggested Reading articles found!