Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050310    DOI: 10.1088/1674-1056/24/5/050310
GENERAL Prev   Next  

Effect of interaction and temperature on quantum phase transition in anisotropic square-octagon lattice

Bao An (保安)a b, Zhang Xue-Feng (张雪峰)b, Zhang Xiao-Zhong (章晓中)a
a Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
b School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Abstract  

We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal–insulator transition increases for fixed temperature. The interaction–anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.

Keywords:  anisotropic square-octagon lattice      fermions      quantum phase transition      cellular dynamical mean field theory  
Received:  13 November 2014      Revised:  03 December 2014      Accepted manuscript online: 
PACS:  03.75.Ss (Degenerate Fermi gases)  
  37.10.Jk (Atoms in optical lattices)  
  32.80.Hd (Auger effect)  
  67.85.Lm (Degenerate Fermi gases)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174169, 11234007, and 51471093).

Corresponding Authors:  Bao An     E-mail:  ba09@mails.tsinghua.edu.cn
About author:  03.75.Ss; 37.10.Jk; 32.80.Hd; 67.85.Lm

Cite this article: 

Bao An (保安), Zhang Xue-Feng (张雪峰), Zhang Xiao-Zhong (章晓中) Effect of interaction and temperature on quantum phase transition in anisotropic square-octagon lattice 2015 Chin. Phys. B 24 050310

[1] Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412
[2] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
[3] Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
[4] Chen Y H, Li J and Ting C S 2013 Phys. Rev. B 88 195130
[5] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001
[6] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
[7] Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
[8] Liu G C, Zhu S L, Jiang S J, Sun F D and Liu W M 2010 Phys. Rev. A 82 053605
[9] Liu H D, Chen Y H, Lin H F, Tao H S and Liu W M 2014 Scientific Reports 4 4829
[10] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
[11] Galanakis D, 1 Stanescu T D and Phillips P 2009 Phys. Rev. B 79 115116
[12] Tao H S, Chen Y H, Lin H F, Liu H D and Liu W M 2014 Scientific Reports 4 5367
[13] Ohashi T, Momoi T, Tsunetsugu H and Kawakami N 2008 Science 100 076402
[14] Ohashi T and Kawakami N 2006 Phys. Rev. Lett. 97 066401
[15] Kargarian M and Fiete G A 2010 Phys. Rev. B 82 085106
[16] Liu X P, Chen W C, Wang Y F and Gong C D 2013 J. Phys.: Condens. Matter 25 305602
[17] Bao A, Tao H S, Liu H D, Zhang X Z and Liu W M 2015 Scientific Reports 4 6918
[18] Parcollet O and Biroli G 2004 Phys. Rev. Lett. 92 226402
[19] Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
[20] Bolech C J, Kancharla S S and Kotliar G 2003 Phys. Rev. B 67 075110
[21] Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[22] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[23] Hubbard J 1963 Proc. R. Soc. Lond. A 276 238
[24] Hubbard J 1964 Proc. R. Soc. Lond. A 281 401
[25] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[1] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[4] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[5] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[6] Collective modes of type-II Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Yuan Sun(孙远), Liang Liu(刘亮), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(2): 026701.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[9] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[10] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[11] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[12] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[13] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[14] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[15] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
No Suggested Reading articles found!