Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070302    DOI: 10.1088/1674-1056/abe1aa
GENERAL Prev   Next  

Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle

Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺)
Department of Physics, Guizhou University, Guiyang 550025, China
Abstract  The Dirac-Weyl equation characterized quasi-particles in the T3 lattice are studied under external magnetic field using the generalized uncertainty principle (GUP). The energy spectrum of the quasi-particles is found by the Nikiforov-Uvarov method. Based on the energy spectrum obtained, the thermodynamic properties are given, and the influence of the GUP on the statistical properties of systems is discussed. The results show that the energy and thermodynamic functions of massless Dirac-Weyl fermions in the T3 lattice depend on the variation of the GUP parameter.
Keywords:  T3 lattice      massless Dirac-Weyl fermions      generalized uncertainty principle      thermodynamic property  
Received:  20 November 2020      Revised:  31 December 2020      Accepted manuscript online:  01 February 2021
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  05.70.Ce (Thermodynamic functions and equations of state)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11565009).
Corresponding Authors:  Chao-Yun Long     E-mail:  chaoyunlong@126.com

Cite this article: 

Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺) Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle 2021 Chin. Phys. B 30 070302

[1] Pedram P 2010 Int. J. Mod. Phys. D 19 2003
[2] Das S and Vagenas E C 2009 Can. J. Phys. 87 233
[3] Majumder B 2011 Phys. Rev. D 84 064031
[4] Pedram P 2012 Phys. Lett. B 714 317
[5] Nozari K and Etemadi A 2012 Phys. Rev. D 85 104029
[6] Menculini L, Panella O and Roy P 2013 Phys. Rev. D 87 065017
[7] Nozari K, Pedram P and Molkara M 2012 Int. J. Theor. Phys. 51 1268
[8] Ali A F, Das S and Vagenas E C 2009 Phys. Lett. B 678 497
[9] Maggiore M 1993 Phys. Lett. B 319 83
[10] Nouicer K 2006 J. Phys. A: Math. Gen. 39 5125
[11] Adler R J, Chen P and Santiago D I 2001 Gen. Relat. Gravit. 33 2101
[12] Kempf A and Niemeyer J C 2001 Phys. Rev. D 64 103501
[13] Easther R, Greene B R, Kinney W H and Shiu G 2001 Phys. Rev. D 64 103502
[14] Hassan S F and Sloth M S 2003 Nucl. Phys. B 674 434
[15] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028
[16] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett. 82 4971
[17] Hořava P and Minic D 2000 Phys. Rev. Lett. 85 1610
[18] Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B 81 041410
[19] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sende A and Sen U 2006 Adv. Phys. 56 243
[20] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[21] Apaja V, Hyrkäs M and Manninen M 2010 Phys. Rev. A 82 041402
[22] Grynberg G, Lounis B, Verkerk P, Courtois J Y and Salomon C 1993 Phys. Rev. Lett. 70 2249
[23] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A 80 063603
[24] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[25] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601
[26] Liu G, Zhu S L, Jiang S, Sun F and Liu W M 2010 Phys. Rev. A 82 053605
[27] Weeks C and Franz M 2010 Phys. Rev. B 82 085310
[28] Green D, Santos L and Chamon C 2010 Phys. Rev. B 82 075104
[29] Stanescu T D, Galitski V and Das S S 2010 Phys. Rev. A 82 013608
[30] Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
[31] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
[32] Guo H M and Franz M 2009 Phys. Rev. Lett. 103 206805
[33] Fu L, Kane C K and Mele E J 2007 Phys. Rev. Lett. 98 106803
[34] Kargarian M and Fiete G A 2010 Phys. Rev. B 82 085106
[35] Sutherland B 1986 Phys. Rev. B 34 5208
[36] Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A 83 023609
[37] Cheng Y F, Jiao K S, Pan L F, Cao Z Z and Li X Y 2014 Phys. Scr. 89 075803
[38] Tazimi N and Ghasempour A 2020 Adv. High Energy Phys. 2020 2541837
[39] Yazarloo B H, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 51
[40] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 10303
[41] Alsddi K S 2014 Chin. Phys. Lett. 31 120301
[42] Zhang M C 2013 Chin. Phys. Lett. 30 110301
[43] Eshghi M, Sever R and Ikhdair S M 2018 Chin. Phys. B 27 020301
[44] Ikhdair and Sameer M 2011 J. Math. Phys. 52 052303
[45] Hassanabadi H, Hosseini S S, Boumali A and Zarrinkamar S 2014 J. Math. Phys. 55 033502
[46] Wang B Q, Long Z W, Long C Y and Wu S R 2018 Indina J. Phys. 92 1419
[47] Boumali A 2016 Acta Phys. Pol. B 47 2067
[48] Wu S R, Long Z W, Long C Y, Wang B Q and Liu Y 2017 Eur. Phys. J. Plus 132 186
[49] Boumali A 2014 arXiv:1409.6205 [quant-ph]
[50] Pacheco M H, Landim R R and Almeida C A S 2003 Phys. Lett. A 311 93
[51] Boumali A and Hassanabadi H 2013 Eur. Phys. J. Plus 128 124
[52] Boumali A 2007 Phys. Scr. 76 669
[53] Yazdankish E 2020 Int. J. Mod. Phys. E 29 2050032
[54] Hamzavi M, Ikhdair S M and Amirfakhrian M 2012 Eur. Phys J. Plus 127 149
[55] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[56] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
[1] Thermodynamic properties of Heisenberg magnetic systems
Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2014, 23(3): 037502.
[2] Phase transition and thermodynamic properties of ThO2:Quasi-harmonic approximation calculations and anharmonic effects
Li Qiang (李强), Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2014, 23(1): 017101.
[3] The influence of 3d-metal alloy additions on the elastic and thermodynamic properties of CuPd3
Huang Shuo (黄烁), Zhang Chuan-Hui (张川晖), Sun Jing (孙婧), Shen Jiang (申江). Chin. Phys. B, 2013, 22(8): 083401.
[4] Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations
Li Qiang (李强), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(3): 037101.
[5] Thermodynamic properties of 3C–SiC
B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani. Chin. Phys. B, 2013, 22(10): 106401.
[6] Generalized uncertainty principle and tunneling radiation of the SAdS5 black hole
Zhao Ren(赵仁), Zhang Li-Chun(张丽春), Wu Yue-Qin(武月琴), and Li Huai-Fan(李怀繁) . Chin. Phys. B, 2010, 19(1): 010402.
[7] Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian(门福殿), Liu Hui(刘慧), Fan Zhao-Lan(范召兰), and Zhu Hou-Yu(朱后禹). Chin. Phys. B, 2009, 18(7): 2649-2653.
[8] Theoretical study of a melting curve for tin
Xi Feng(习锋) and Cai Ling-Cang(蔡灵仓). Chin. Phys. B, 2009, 18(7): 2898-2900.
[9] Entropy of a rotating and charged black string to all orders in the Planck length
Zhao Ren(赵仁), Wu Yue-Qin (武月琴), and Zhang Li-Chun(张丽春). Chin. Phys. B, 2009, 18(5): 1749-1754.
[10] Finite-size effects in a D-dimensional ideal Fermi gas
Su Guo-Zhen(苏国珍), Ou Cong-Jie(欧聪杰), Wang A Qiu-Ping, and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(12): 5189-5195.
[11] Electronic,  thermodynamic and elastic properties of pyrite RuO2
Yang Ze-Jin (杨则金), Guo Yun-Dong (郭云东), Wang Guang-Chang (王光昶), Li Jin (李劲), Dai Wei (戴伟), Liu Jin-Chao (刘锦超), Cheng Xin-Lu (程新路), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2009, 18(11): 4981-4987.
[12] Phase transition and thermodynamic properties of TiO2 from first-principles calculations
Yu Jing-Xin(于景新), Fu Min(傅敏), Ji Guang-Fu (姬广富), and Chen Xiang-Rong(陈向荣). Chin. Phys. B, 2009, 18(1): 269-274.
[13] Structural and thermodynamic properties of wurtzite-type aluminium nitride from first-principles calculations
Wang Yong-Liang(王永亮), Ai Qiong(艾琼), Chen Xiang-Rong(陈向荣), and Cai Ling-Cang(蔡灵仓). Chin. Phys. B, 2007, 16(12): 3783-3789.
[14] Structural and thermodynamic properties of AlB2 compound
Zhou Xiao-Lin(周晓林), Liu Ke(刘科), Chen Xiang-Rong(陈向荣), and Zhu Jun(朱俊). Chin. Phys. B, 2006, 15(12): 3014-3018.
No Suggested Reading articles found!