Abstract The Dirac-Weyl equation characterized quasi-particles in the T3 lattice are studied under external magnetic field using the generalized uncertainty principle (GUP). The energy spectrum of the quasi-particles is found by the Nikiforov-Uvarov method. Based on the energy spectrum obtained, the thermodynamic properties are given, and the influence of the GUP on the statistical properties of systems is discussed. The results show that the energy and thermodynamic functions of massless Dirac-Weyl fermions in the T3 lattice depend on the variation of the GUP parameter.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11565009).
Corresponding Authors:
Chao-Yun Long
E-mail: chaoyunlong@126.com
Cite this article:
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺) Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle 2021 Chin. Phys. B 30 070302
[1] Pedram P 2010 Int. J. Mod. Phys. D19 2003 [2] Das S and Vagenas E C 2009 Can. J. Phys.87 233 [3] Majumder B 2011 Phys. Rev. D84 064031 [4] Pedram P 2012 Phys. Lett. B714 317 [5] Nozari K and Etemadi A 2012 Phys. Rev. D85 104029 [6] Menculini L, Panella O and Roy P 2013 Phys. Rev. D87 065017 [7] Nozari K, Pedram P and Molkara M 2012 Int. J. Theor. Phys.51 1268 [8] Ali A F, Das S and Vagenas E C 2009 Phys. Lett. B678 497 [9] Maggiore M 1993 Phys. Lett. B319 83 [10] Nouicer K 2006 J. Phys. A: Math. Gen.39 5125 [11] Adler R J, Chen P and Santiago D I 2001 Gen. Relat. Gravit.33 2101 [12] Kempf A and Niemeyer J C 2001 Phys. Rev. D64 103501 [13] Easther R, Greene B R, Kinney W H and Shiu G 2001 Phys. Rev. D64 103502 [14] Hassan S F and Sloth M S 2003 Nucl. Phys. B674 434 [15] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D65 125028 [16] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett.82 4971 [17] Hořava P and Minic D 2000 Phys. Rev. Lett.85 1610 [18] Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B81 041410 [19] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sende A and Sen U 2006 Adv. Phys.56 243 [20] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [21] Apaja V, Hyrkäs M and Manninen M 2010 Phys. Rev. A82 041402 [22] Grynberg G, Lounis B, Verkerk P, Courtois J Y and Salomon C 1993 Phys. Rev. Lett.70 2249 [23] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A80 063603 [24] Guo H M and Franz M 2009 Phys. Rev. B80 113102 [25] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A83 063601 [26] Liu G, Zhu S L, Jiang S, Sun F and Liu W M 2010 Phys. Rev. A82 053605 [27] Weeks C and Franz M 2010 Phys. Rev. B82 085310 [28] Green D, Santos L and Chamon C 2010 Phys. Rev. B82 075104 [29] Stanescu T D, Galitski V and Das S S 2010 Phys. Rev. A82 013608 [30] Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett.105 255302 [31] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett.103 046811 [32] Guo H M and Franz M 2009 Phys. Rev. Lett.103 206805 [33] Fu L, Kane C K and Mele E J 2007 Phys. Rev. Lett.98 106803 [34] Kargarian M and Fiete G A 2010 Phys. Rev. B82 085106 [35] Sutherland B 1986 Phys. Rev. B34 5208 [36] Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A83 023609 [37] Cheng Y F, Jiao K S, Pan L F, Cao Z Z and Li X Y 2014 Phys. Scr.89 075803 [38] Tazimi N and Ghasempour A 2020 Adv. High Energy Phys.2020 2541837 [39] Yazarloo B H, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus127 51 [40] Gao J and Zhang M C 2016 Chin. Phys. Lett.33 10303 [41] Alsddi K S 2014 Chin. Phys. Lett.31 120301 [42] Zhang M C 2013 Chin. Phys. Lett.30 110301 [43] Eshghi M, Sever R and Ikhdair S M 2018 Chin. Phys. B27 020301 [44] Ikhdair and Sameer M 2011 J. Math. Phys.52 052303 [45] Hassanabadi H, Hosseini S S, Boumali A and Zarrinkamar S 2014 J. Math. Phys.55 033502 [46] Wang B Q, Long Z W, Long C Y and Wu S R 2018 Indina J. Phys.92 1419 [47] Boumali A 2016 Acta Phys. Pol. B47 2067 [48] Wu S R, Long Z W, Long C Y, Wang B Q and Liu Y 2017 Eur. Phys. J. Plus132 186 [49] Boumali A 2014 arXiv:1409.6205 [quant-ph] [50] Pacheco M H, Landim R R and Almeida C A S 2003 Phys. Lett. A311 93 [51] Boumali A and Hassanabadi H 2013 Eur. Phys. J. Plus128 124 [52] Boumali A 2007 Phys. Scr.76 669 [53] Yazdankish E 2020 Int. J. Mod. Phys. E29 2050032 [54] Hamzavi M, Ikhdair S M and Amirfakhrian M 2012 Eur. Phys J. Plus127 149 [55] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A374 704 [56] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E19 123
Electronic, thermodynamic and elastic properties of pyrite RuO2 Yang Ze-Jin (杨则金), Guo Yun-Dong (郭云东), Wang Guang-Chang (王光昶), Li Jin (李劲), Dai Wei (戴伟), Liu Jin-Chao (刘锦超), Cheng Xin-Lu (程新路), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2009, 18(11): 4981-4987.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.