|
|
Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle |
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云)†, and He Su(苏贺) |
Department of Physics, Guizhou University, Guiyang 550025, China |
|
|
Abstract The Dirac-Weyl equation characterized quasi-particles in the T3 lattice are studied under external magnetic field using the generalized uncertainty principle (GUP). The energy spectrum of the quasi-particles is found by the Nikiforov-Uvarov method. Based on the energy spectrum obtained, the thermodynamic properties are given, and the influence of the GUP on the statistical properties of systems is discussed. The results show that the energy and thermodynamic functions of massless Dirac-Weyl fermions in the T3 lattice depend on the variation of the GUP parameter.
|
Received: 20 November 2020
Revised: 31 December 2020
Accepted manuscript online: 01 February 2021
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11565009). |
Corresponding Authors:
Chao-Yun Long
E-mail: chaoyunlong@126.com
|
Cite this article:
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺) Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle 2021 Chin. Phys. B 30 070302
|
[1] Pedram P 2010 Int. J. Mod. Phys. D 19 2003 [2] Das S and Vagenas E C 2009 Can. J. Phys. 87 233 [3] Majumder B 2011 Phys. Rev. D 84 064031 [4] Pedram P 2012 Phys. Lett. B 714 317 [5] Nozari K and Etemadi A 2012 Phys. Rev. D 85 104029 [6] Menculini L, Panella O and Roy P 2013 Phys. Rev. D 87 065017 [7] Nozari K, Pedram P and Molkara M 2012 Int. J. Theor. Phys. 51 1268 [8] Ali A F, Das S and Vagenas E C 2009 Phys. Lett. B 678 497 [9] Maggiore M 1993 Phys. Lett. B 319 83 [10] Nouicer K 2006 J. Phys. A: Math. Gen. 39 5125 [11] Adler R J, Chen P and Santiago D I 2001 Gen. Relat. Gravit. 33 2101 [12] Kempf A and Niemeyer J C 2001 Phys. Rev. D 64 103501 [13] Easther R, Greene B R, Kinney W H and Shiu G 2001 Phys. Rev. D 64 103502 [14] Hassan S F and Sloth M S 2003 Nucl. Phys. B 674 434 [15] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028 [16] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett. 82 4971 [17] Hořava P and Minic D 2000 Phys. Rev. Lett. 85 1610 [18] Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B 81 041410 [19] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sende A and Sen U 2006 Adv. Phys. 56 243 [20] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [21] Apaja V, Hyrkäs M and Manninen M 2010 Phys. Rev. A 82 041402 [22] Grynberg G, Lounis B, Verkerk P, Courtois J Y and Salomon C 1993 Phys. Rev. Lett. 70 2249 [23] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A 80 063603 [24] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [25] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601 [26] Liu G, Zhu S L, Jiang S, Sun F and Liu W M 2010 Phys. Rev. A 82 053605 [27] Weeks C and Franz M 2010 Phys. Rev. B 82 085310 [28] Green D, Santos L and Chamon C 2010 Phys. Rev. B 82 075104 [29] Stanescu T D, Galitski V and Das S S 2010 Phys. Rev. A 82 013608 [30] Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302 [31] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811 [32] Guo H M and Franz M 2009 Phys. Rev. Lett. 103 206805 [33] Fu L, Kane C K and Mele E J 2007 Phys. Rev. Lett. 98 106803 [34] Kargarian M and Fiete G A 2010 Phys. Rev. B 82 085106 [35] Sutherland B 1986 Phys. Rev. B 34 5208 [36] Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A 83 023609 [37] Cheng Y F, Jiao K S, Pan L F, Cao Z Z and Li X Y 2014 Phys. Scr. 89 075803 [38] Tazimi N and Ghasempour A 2020 Adv. High Energy Phys. 2020 2541837 [39] Yazarloo B H, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 51 [40] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 10303 [41] Alsddi K S 2014 Chin. Phys. Lett. 31 120301 [42] Zhang M C 2013 Chin. Phys. Lett. 30 110301 [43] Eshghi M, Sever R and Ikhdair S M 2018 Chin. Phys. B 27 020301 [44] Ikhdair and Sameer M 2011 J. Math. Phys. 52 052303 [45] Hassanabadi H, Hosseini S S, Boumali A and Zarrinkamar S 2014 J. Math. Phys. 55 033502 [46] Wang B Q, Long Z W, Long C Y and Wu S R 2018 Indina J. Phys. 92 1419 [47] Boumali A 2016 Acta Phys. Pol. B 47 2067 [48] Wu S R, Long Z W, Long C Y, Wang B Q and Liu Y 2017 Eur. Phys. J. Plus 132 186 [49] Boumali A 2014 arXiv:1409.6205 [quant-ph] [50] Pacheco M H, Landim R R and Almeida C A S 2003 Phys. Lett. A 311 93 [51] Boumali A and Hassanabadi H 2013 Eur. Phys. J. Plus 128 124 [52] Boumali A 2007 Phys. Scr. 76 669 [53] Yazdankish E 2020 Int. J. Mod. Phys. E 29 2050032 [54] Hamzavi M, Ikhdair S M and Amirfakhrian M 2012 Eur. Phys J. Plus 127 149 [55] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704 [56] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|