Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050309    DOI: 10.1088/1674-1056/24/5/050309
GENERAL Prev   Next  

A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state

Quan Dong-Xiao (权东晓), Zhu Chang-Hua (朱畅华), Liu Shi-Quan (刘世全), Pei Chang-Xing (裴昌幸)
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
Abstract  We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.
Keywords:  quantum key distribution      pre-detection      secure communication distance      decoy state  
Received:  02 September 2014      Revised:  20 November 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61372076), the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038), and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051201021).
Corresponding Authors:  Quan Dong-Xiao     E-mail:  dxquan@xidian.edu.cn
About author:  03.67.Hk; 03.67.Dd; 03.67.Ac

Cite this article: 

Quan Dong-Xiao (权东晓), Zhu Chang-Hua (朱畅华), Liu Shi-Quan (刘世全), Pei Chang-Xing (裴昌幸) A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state 2015 Chin. Phys. B 24 050309

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p. 175
[2] Ekert A 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] LO H K and Chau H 1999 Science 283 2050
[5] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[6] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[7] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[8] Wang X B 2005 Phys. Rev. Lett. 94 230503
[9] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[10] Chi H H, Yu Z W and Wang X B 2012 Phys. Rev. A 86 042307
[11] Piparo N L and Razavi M 2012 Phys. Rev. A 88 012332
[12] Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
[13] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[14] Wang Q, Wang X B, Björk G and Karlsson A 2007 EPL 79 40001
[15] Dong C, Zhao S H, Zhao W H, Shi L and Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese)
[16] Yu Z W, Zhou Y H and Wang X B 2013 Phys. Rev. A 88 062339
[17] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[18] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[19] Wojcik A 2003 Phys. Rev. Lett. 90 157901
[20] Mladen P 2013 Phys. Rev. A 87 042326
[21] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!