Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017501    DOI: 10.1088/1674-1056/22/1/017501
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Emergent phenomena in manganites under spatial confinement

Shen Jian (沈健)a b, T. Z. Wardc, L. F. Yina
a State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
b Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA;
c Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Abstract  It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom–charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization.
In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation.
Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS “electronic nanofabrication.” This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.
Keywords:  manganites      metal-insulator transition      electrical transport      electronic phase separation  
Received:  29 November 2012      Accepted manuscript online: 
PACS:  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  75.47.Gk (Colossal magnetoresistance)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921801), the National Natural Science Foundation of China (Grant Nos. 91121002 and 11274071), US DOE Office of Basic Energy Sciences, Scientific User Facilities Division, and the US DOE grant DE-SC0002136, the US DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Oak Ridge National Laboratory.
Corresponding Authors:  Shen Jian     E-mail:  shenj5494@fudan.edu.cn

Cite this article: 

Shen Jian (沈健), T. Z. Ward, L. F. Yin Emergent phenomena in manganites under spatial confinement 2013 Chin. Phys. B 22 017501

[1] The April 21st Issue of Science 288 (2000) was dedicated to correlatedelectron systems.
[2] Chu Y H, Martin LW, HolcombMB and Ramesh R 2007 Mater. Today10 16
[3] Israel C, Calder′on M J and Mathur N D 2007 Mater. Today 10 24
[4] Habermeier H 2007 Mater. Today 10 34
[5] Ohta H 2007 Mater. Today 10 44
[6] Moreo A, Yunoki S and Dagotto E 1999 Science 283 2034
[7] Shenoy V B, Sarma D D and Rao C N R 2006 ChemPhysChem 7 2053
[8] Zhang L W, Israel C, Biswas A, Greene R L and de Lozanne A 2002Science 298 805
[9] Loudon J C, Mathur N D and Midgley P A 2002 Nature 420 797
[10] Ma J X, Gillaspie D T, Plummer E W and Shen J 2005 Phys. Rev. Lett.95 237210
[11] Tao J, Niebieskikwiat D, Varela M, Luo W, Schofield M A, Zhu Y,Salamon M B, Zuo J M, Pantelides S T and Pennycook S J 2009 Phys.Rev. Lett. 103 97202
[12] Murakami Y, Kasai H, Kim J J, Mamishin S, Shindo D, Mori S andTonomura A 2010 Nat. Nanotech. 5 37
[13] Lai K J, Nakamura M, KundhikanjanaW, Kawasaki M, Tokura Y, KellyM A and Shen Z X 2010 Science 329 190
[14] Dagotto E, Hotta T and Moreo A 2001 Phys. Reports 344 1
[15] Salamon M and Jaime M 2001 Rev. Mod. Phys. 73 583
[16] Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
[17] Chrisey D B and Hubler G K 1994 Pulsed Laser Deposition of ThinFilms (New York: Wiley)
[18] Willmott P R and Huber J R 2000 Rev. Mod. Phys. 72 315
[19] Shen J, Gai Z and Kirschner J 2004 Surf. Sci. Report 52 163
[20] Willmott P R 2004 Progress in Surface Science 76 163
[21] Ashfold M N R, Claeyssens F, Fuge G M and Henley S J 2004 Chem.Soc. Rev. 33 23
[22] Hong W, Lee H N, Yoon M, Christen H M, Lowndes D H, Suo Z andZhang Z 2005 Phys. Rev. Lett. 95 95501
[23] Ohtomo A and Hwang H Y 2007 J. Appl. Phys. 102 83704
[24] Sinha S K, Bhattacharya R, Ray S K and Manna I 2011 Mater. Lett. 65146
[25] Guo HW, Sun D,WangW, Gai Z, Kravchenko I, Shao J, Jiang L,WardT Z, Snijders P C, Yin L F, Zhang Z, Shen J and Xu X S Growth diagramof La0:7Sr0:3MnO3 Thin Films using Pulsed Laser Deposition(submitted to J. Appl. Phys.)
[26] Zhai H Y, Ma J X, Gillaspie D T, Zhang X G, Plummer E W and ShenJ 2006 Phys. Rev. Lett. 97 167201
[27] Ward T Z, Liang S H, Fuchigami K, Yin L F, Dagotto E, Plummer EWand Shen J 2008 Phys. Rev. Lett. 100 247204
[28] Ward T Z, Zhang X G, Yin L F, Zhang X Q, Liu M, Snijders P C, JesseS, Plummer E W, Cheng Z H, Dagotto E and Shen J 2009 Phys. Rev.Lett. 102 087201
[29] Ward T Z, Gai Z, Guo H W, Yin L F and Shen J 2011 Phys. Rev. B 83125125
[30] Quintero M, Sacanell J, Ghivelder L, Gomes A, Leyva G and Parisi F2009 Physica B: Condensed Matter 404 2763
[31] Lima Sharma A, Sharma P, McCall S, Kim S and Cheong S 2009 Appl.Phys. Lett. 95 092506
[32] Rini M, Tobey R, Dean N, Itatani J, Tomioka Y, Tokura Y, SchoenleinR W and Cavalleri A 2007 Nature 449 72
[33] Polli D, Rini M,Wall S, Schoenlein RW, Tomioka Y, Tokura Y, CerulloG and Cavalleri A 2007 Nat. Mater. 6 643
[34] Ogasawara T, Kimura T, Ishikawa T, Kuwata-Gonokami M and TokuraY 2001 Phys. Rev. B 63 113105
[35] Ahn K H, Lookman T and Bishop A R 2004 Nature 428 401
[36] Gillaspie D, Ma J X, Zhai H Y, Ward T Z, Christen H M, Plummer EW and Shen J 2006 J. Appl. Phys. 99 08
[37] Dhakal T, Tosado J and Biswas A 2007 Phys. Rev. B 75 092404
[38] Wu W, Israel C, Hur N, Park S, Cheong S W and de Lozanne A 2006Nat. Mater. 5 881
[39] Dho J, Kim Y N, Hwang Y S, Kim J C and Hur N H 2003 Appl. Phys.Lett. 82 1434
[40] Zhang L, Israel C, Biswas A, Greene R L and de Lozanne A 2002 Science298 805
[41] Rairigh R P, Singh-Bhalla G, Tongay S, Dhakal T, Biswas A andHebard A F 2007 Nat. Phys. 3 551
[42] Ward T Z, Budai J D, Gai Z, Tischler J Z, Yin L F and Shen J 2009 Nat.Phys. 5 885
[43] Ward T Z, Gai Z, Xu X Y, Guo H W, Yin L F and Shen, J 2011 Phys.Rev. Lett. 106 157207
[44] Guo H W, Noh J H, Dong S, Rack P D, Gai Z, Xu X, Dagotto E, ShenJ and Ward T Z Dynamic Resistive Switching Controlled by Local LateralGating in Phase Separated Manganite Wires (submitted to NatureComm.)
[1] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[2] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[3] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[4] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[5] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[6] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[7] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[8] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[9] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[10] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[11] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[12] Review of photoinduced effect in manganite films and their heterostructures
Xin-Yu Li(李欣谕), Long Zhao(赵龙), Xiang-Yang Wei(魏向洋), Hao Li(李豪), Ke-Xin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117501.
[13] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[14] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[15] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
No Suggested Reading articles found!