CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement of mobility edge model by using new density of states with exponential tail for organic diode |
Muhammad Ammar Khan, Sun Jiu-Xun (孙久勋) |
School of Physical Electronics, University of Electronic Science and Technology, Chengdu 610054, China |
|
|
Abstract The mobility edge (ME) model with single Gaussian density of states (DOS) is simplified based on the recent experimental results about the Einstein relationship. The free holes are treated as being non-degenerate, and the trapped holes are dealt with as being degenerate. This enables the integral for the trapped holes to be easily realized in a program. The J-V curves are obtained through solving drift-diffusion equations. When this model is applied to four organic diodes, an obvious deviation between theoretical curves and experimental data is observed. In order to solve this problem, a new DOS with exponential tail is proposed. The results show that the consistence between J-V curves and experimental data based on a new DOS is far better than that based on the Gaussian DOS. The variation of extracted mobility with temperature can be well described by the Arrhenius relationship.
|
Received: 26 August 2014
Revised: 04 November 2014
Accepted manuscript online:
|
PACS:
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31470822). |
Corresponding Authors:
Sun Jiu-Xun
E-mail: sjx@uestc.edu.cn
|
Cite this article:
Muhammad Ammar Khan, Sun Jiu-Xun (孙久勋) Improvement of mobility edge model by using new density of states with exponential tail for organic diode 2015 Chin. Phys. B 24 047203
|
[1] |
Fishchuk I I 2001 Philos. Mag. B 81 561
|
[2] |
Kadashchuk A, Skryshevskii Y, Vakhnin A, Ostapenko N, Arkhipov V I, Emelianova E V and Bassler H 2001 Phys. Rev. B 63 115205
|
[3] |
Grunewald M and Thomas P 1979 Phys. Status Solidi B 94 125
|
[4] |
Fishchuk I I, Hertel D, Bassler H and Kadashchuk A K 2002 Phys. Rev. B 65 125201
|
[5] |
Bassler H 1993 Phys. Status Solidi B 175 15
|
[6] |
Bassler H 1981 Phys. Status Solidi B 107 9
|
[7] |
Hartenstein B and Bassler H 1995 J. Non-Cryst. Solids 190 112
|
[8] |
Arkhipov V I, Emelianova E V and Adriaenssens G J 2001 Phys. Rev. 64 125125
|
[9] |
Vissenberg M C J M and Matters M 1998 Phys. Rev. B 57 12964
|
[10] |
Mott N F 1970 Philos. Mag. 22 7
|
[11] |
Mott N F and Twose W D 1961 Adv. Phys. 10 107
|
[12] |
Kalb W L, Mattenberger K and Batlogg B 2008 Phys. Rev. B 78 035334
|
[13] |
Krellner C, Haas S, Goldmann C, Pernstich K P, Gundlach D J and Batlogg B 2007 Phys. Rev. B 75 245115
|
[14] |
Kalb W L, Haas S, Krellner C, Mathis T and Batlogg B 2010 Phys. Rev. B 81 155315
|
[15] |
Dacuna J, Xie W and Salleo A 2012 Phys. Rev. B 86 115202
|
[16] |
Dacuna J and Salleo A 2011 Phys. Rev. B 84 195209
|
[17] |
Mehraeen S, Coropceanu V and Brédas J L 2013 Phys. Rev. B 87 195209
|
[18] |
Puigdollers J, Marsal A, Cheylan S, Voz C and Alcubilla R 2010 Org. Electr. 11 1333
|
[19] |
Kalb W L and Batlogg B 2010 Phys. Rev. B 81 035327
|
[20] |
Oelerich J O, Huemmer D and Baranovskii S D 2012 Phys. Rev. Lett. 108 226403
|
[21] |
Yogev S, Halpern E, Matsubara R, Nakamura M and Rosenwaks Y 2011 Phys. Rev. B 84 165124
|
[22] |
Cho J M, Akiyama Y, Kakinuma T and Mori T 2013 AIP Adv. 3 102131
|
[23] |
Welborn M, Chen J H and Van Voorhis T 2013 Phys. Rev. B 88 205113
|
[24] |
Roichman Y and Tessler N 2002 Appl. Phys. Lett. 80 1948
|
[25] |
Peng Y Q, Yang J H and Lu F P 2006 Appl. Phys. A 83 305
|
[26] |
Peng Y Q, Yang J H, Lu F P, et al. 2007 Appl. Phys. A 86 225
|
[27] |
Das A and Khan A 2008 Appl. Phys. A 93 527
|
[28] |
Lu X H, Sun J X, Guo Y and Zhang Da 2009 Chin. Phys. Lett. 26 087202
|
[29] |
Neumann F, Genenko Y A and von Seggern H 2006 J. Appl. Phys. 99 013704
|
[30] |
Wetzelaer G A H, Koster L J A and Blom P W M 2011 Phys. Rev. Lett. 107 066605
|
[31] |
Nicolai H T, Mandoc M M and Blom P W M 2011 Phys. Rev. B 83 195204
|
[32] |
Nicolai H T, Kuik M, Wetzelaer G A H, de Boer B, Campbell C, Risko C, Brédas J L and Blom P W M 2012 Nat. Mater. Lond. 11 882
|
[33] |
Gummel H K 1964 IEEE Trans. Electron Dev. 11 455
|
[34] |
Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Dev. 16 64
|
[35] |
Paasch G and Scheinert S 2010 J. Appl. Phys. 107 104501
|
[36] |
Neumann F, Genenko Y A and von Seggern H 2006 J. Appl. Phys. 99 013704
|
[37] |
de Bruyn P, van Rest A H P, Wetzelaer G A H, de Leeuw D M and Blom P W M 2013 Phys. Rev. Lett. 111 186801
|
[38] |
Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A, Blom P W M, de Leeuw D M and Michels M A J 2005 Phys. Rev. Lett. 94 206601
|
[39] |
Tanase C, Meijer E J, Blom P W M and de Leeuw D M 2003 Phys. Rev. Lett. 91 216601
|
[40] |
Craciun N I, Wildeman J and Blom P W M 2008 Phys. Rev. Lett. 100 056601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|