Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040303    DOI: 10.1088/1674-1056/24/4/040303
GENERAL Prev   Next  

Universal quantum computation using all-optical hybrid encoding

Guo Qi (郭奇)a b, Cheng Liu-Yong (程留永)a, Wang Hong-Fu (王洪福)b, Zhang Shou (张寿)a b
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.
Keywords:  quantum computation      linear optics      cross-Kerr nonlinearities  
Received:  29 July 2014      Revised:  16 November 2014      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).
Corresponding Authors:  Zhang Shou     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Universal quantum computation using all-optical hybrid encoding 2015 Chin. Phys. B 24 040303

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H, DiVincenzo D P, Smolin J A and Wooters W K 1996 Phys. Rev. A 54 3824
[3] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[4] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[5] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[6] Steane A, Roos C F, Stevens D, Mundt A, Leibfried D, Schmidt-Kaler F and Blatt R 2000 Phys. Rev. A 62 042305
[7] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[8] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[9] Shang R N, Li H O, Cao G, Yu G D, Xiao M, Tu T and Guo G P 2014 Chin. Phys. Lett. 31 050302
[10] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[11] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[12] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[13] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[14] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[15] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[16] Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
[17] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[18] Xiu X M, Dong L, Gao Y J and Yi X X 2012 Quantum Inf. Comput. 12 0159
[19] Wang X W, Zhang D Y, Tang S Q, Xie L J, Wang Z Y and Kuang L M 2012 Phys. Rev. A 85 052326
[20] Guo Q, Cheng L Y, Wang H F, Zhang S and Yeon K H 2012 Chin. Phys. B 21 100301
[21] Wang Y, Ye L and Fang B L 2011 Chin. Phys. B 20 100313
[22] Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
[23] He B, Lin Q and Simon C 2011 Phys. Rev. A 83 053826
[24] Zhao R T, Guo Q, Cheng L Y, Sun L L, Wang H F and Zhang S 2013 Chin. Phys. B 22 030313
[25] Wu Q Q, Liao J Q and Kuang L M 2011 Chin. Phys. B 20 034203
[26] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[27] Ralph T C, Gilchrist A, Milburn G J, Munro W J and Glancy S 2003 Phys. Rev. A 68 042319
[28] Lund A P, Ralph T C and Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
[29] Zheng S B 2014 Chin. Phys. B 19 044203
[30] Ji Y H and Liu Y M 2014 Chin. Phys. B 23 110303
[31] Sheng Y B, Liu J, Zhao S Y, Wang L and Zhou L 2014 Chin. Phys. B 23 080305
[32] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
[33] Cochrane P T, Milburn G J and Munro W J 1999 Phys. Rev. A 59 2631
[34] Ralph T C and Pryde G J 2010 Prog. Opt. 54 209
[35] Lee S W and Jeong H 2013 Phys. Rev. A 87 022326
[36] Gottesman D and Chuang I L 1999 Nature 402 390
[37] Dai H Y, Chen P X, Liang L M and Li C Z 2006 Phys. Lett. A 355 285
[38] Dai H Y, Zhang M and Kuang L M 2008 Commun. Theor. Phys. 50 73
[39] Lee S W and Jeong H 2013 arXiv: 1304.1214
[40] Paris M G A 1996 Phys. Lett. A 217 78
[41] Fujisawa T and Koshiba M 2006 Opt. Lett. 31 56
[42] Ourjoumtsev A, Jeong H, Tualle-Brouri R and Grangier P 2007 Nature 448 784
[43] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[44] Marek P and Fiurášek J 2010 Phys. Rev. A 82 014304
[45] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M and Andersen U L 2011 Phys. Rev. A 84 050301
[46] Takahashi H, Neergaard-Nielsen J S, Takeuchi M, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2010 Nat. Photon. 4 178
[47] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[48] Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2008 Phys. Rev. Lett. 101 233605
[49] Phoenix S J D 1990 Phys. Rev. A 41 5132
[50] Wall D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[6] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[10] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[11] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[12] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[13] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
No Suggested Reading articles found!