Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040304    DOI: 10.1088/1674-1056/24/4/040304
GENERAL Prev   Next  

Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise

Wang Chao (王朝)a b, Liu Jian-Wei (刘建伟)a, Chen Xiu-Bo (陈秀波)c d, Bi Ya-Gang (毕亚港)b, Shang Tao (尚涛)a
a School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
b Air Force Command College, Beijing 100097, China;
c Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
d State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China
Abstract  This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
Keywords:  collective noise      deterministic secure quantum communication      logical Bell states  
Received:  12 August 2014      Revised:  01 November 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61272501, 61272514, 61170272, 61472048, 61402058, 61121061, and 61411146001), the Program for New Century Excellent Talents in University of China (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012), the Fok Ying Tong Education Foundation (Grant No. 131067), the Natural Science Foundation of Beijing (Grant Nos. 4132056 and 4152038), the Postdoctoral Science Foundation of China (Grant No. 2014M561826), and the National Key Basic Research Program, China (Grant No. 2012CB315905)
Corresponding Authors:  Wang Chao     E-mail:  wangchaopaper@126.com

Cite this article: 

Wang Chao (王朝), Liu Jian-Wei (刘建伟), Chen Xiu-Bo (陈秀波), Bi Ya-Gang (毕亚港), Shang Tao (尚涛) Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise 2015 Chin. Phys. B 24 040304

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p. 175
[2] Wang X B 2004 Phys. Rev. Lett. 92 077902
[3] Xiong Z X 2012 Phys. Rev. A 85 012334
[4] Zhu C H, Pei C X, Quan D X, Gao J L, Chen N and Yi Y H 2010 Chin. Phys. Lett. 27 090301
[5] Chen M J and Liu X 2011 Chin. Phys. B 20 100305
[6] Hwang T, Hwang C C and Tsai C W 2011 Eur. Phys. J. D 61 785
[7] Chen D, Zhao S H and Zhao W H 2014 Acta Phys. Sin. 63 030302 (in Chinese)
[8] Tian P G, Zhou Y Y and Zhang H Q 2013 Acta Phys. Sin. 62 200302 (in Chinese)
[9] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[10] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[11] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[12] Wang L Y, Chen X B, Xu G and Yang Y X 2011 Opt. Commun. 284 1719
[13] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[14] Lin S, Gao F and Liu X F 2011 Chin. Phys. Lett. 28 030302
[15] Li C Y, Li X H, Deng F G and Zhou H Y 2008 Chin. Phys. B 17 2352
[16] Deng F G and Long G L 2004 Phys. Rev. A 71 052319
[17] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[18] Yan L L, Chang Y and Zhang S B 2013 Chin. Phys. Lett. 30 090301
[19] Kao S H and Hwang T 2013 Chin. Phys. B 22 060308
[20] Shimizu K and Imoto N 1999 Phys. Rev. A 60 157
[21] Beige A, Englert B G and Kurtsiefer C 2002 Acta Phys. Pol. A 101 357
[22] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[23] Yuan H, Song J and Liu X Y 2011 Int. J. Quantum Inf. 67 607
[24] Shukla C, Banerjee A and Pathak A 2012 Int. J. Theor. Phys. 67 661
[25] Tsai C W, Hsieh C R and Hwang T 2011 Eur. Phys. J. D 61 779
[26] Kao S H, Tsai C W and Hwang T 2012 Int. J. Theor. Phys. 51 3868
[27] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[28] Wang G Y, Fang X M and Tan X H 2006 Chin. Phys. Lett. 23 2658
[29] Liu W J, Chen H W and Ma T H 2009 Chin. Phys. B 18 4105
[30] Li D and Xiu X M 2010 Acta Phys. Pol. B 41 1203
[31] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[32] Boileau J C, Gottesman D, Laflamme R, Poulin D and Spekkens R W 2004 Phys. Rev. Lett. 92 017901
[33] Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
[34] Li J, Jin H F and Jin B 2012 Chin. Sci. Bull. 57 4434
[35] Ren B C, Wei H R, Hua M, Li T and Deng F G 2013 Eur. Phys. J. D 67 30
[36] Nielsen M A and Chung I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[37] Li X H, Deng F G and Zhou H Y 2007 Appl. Phys. Lett. 91 144101
[38] Walton Z D, Abouraddy A F, Sergienko A V, Saleh B E A and Teich M C 2003 Phys. Rev. Lett. 91 087901
[39] Wang X B 2005 Phys. Rev. A 72 050304
[40] Huang W, Guo F Z, Huang Z, Wen Q Y and Zhu F C 2011 Opt. Commun. 284 536
[41] Yang C W and Hwang T 2013 Quantum Inf. Process. 12 3207
[42] Xiu M M, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 4171
[43] Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quantum Inf. 7 1479
[44] Li C Y and Li Y S 2010 Int. J. Quantum Inf. 8 1101
[45] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China Ser. G 54 942
[46] Yang C W, Tsai C W and Hwang T 2011 Sci. China Ser. G 54 496
[47] Yang C W and Hwang T 2013 Quantum Inf. Process. 12 3495
[48] Yang C W and Hwang T 2012 Int. J. Theor. Phys. 51 3941
[49] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[50] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[51] Yang Y G, Chai H P, Wang Y, Teng Y W and Wen Q Y 2011 Sci. China Ser. G 54 1619
[52] Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Phys. Scr. 83 025003
[53] Li C Y and Li Y S 2011 Chin. Phys. Lett. 28 020304
[54] Sun Y, Wen Q Y and Zhu F C 2010 Opt. Commun. 283 181
[55] Gu B, Mu L L, Ding L G, Zhang C Y and Li C Q 2010 Opt. Commun. 283 3099
[56] Dong L, Xiu X M, Gao Y J and Chi F 2009 Opt. Commun. 282 1688
[57] Gu B, Pei S X, Song B and Zhong K 2009 Sci. China Ser. G 52 1913
[58] Yang C W, Tsai C W and Hwang T 2013 Quantum Inf. Process. 12 3043
[59] Yuan H, Zhang Q, Hong L, Yin W J and Xu D 2014 Int. J. Theor. Phys.
[60] Bourennane M, Eibl M, Gaertner S, Kurtsiefer C, Cabello A and Weinfurter H 2004 Phys. Rev. Lett. 92 107901
[61] Beveratos A, Brouri R, Gacoin T, Villing A, Poizat J P and Grangier P 2002 Phys. Rev. Lett. 89 187901
[62] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[63] Shannon C E 1949 Bell Syst. Tech. J. 28 656
[64] Yang C W, Tsai C W and Hwang T 2012 Quantum Inf. Process. 11 113
[65] Yang S, Chen X B and Yang Y X 2012 Commun. Theor. Phys. 58 51
[66] Wang T Y and Wen Q Y 2011 Opt. Commun. 284 3664
[67] Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Scr. 86 055002
[68] Wang M M, Chen X B and Yang Y X 2013 Quantum Inf. Process. 12 785
[69] Gao F, Wen Q Y and Zhu F C 2007 Phys. Lett. A 360 748
[70] Wang T Y, Wen Q Y and Chen X B 2010 Opt. Commun. 283 5261
[71] Cai Q Y 2006 Phys. Lett. A 351 23
[72] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[1] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[2] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[3] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[4] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[5] Faithful quantum secure direct communication protocol against collective noise
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹). Chin. Phys. B, 2010, 19(11): 110306.
[6] An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication
Liu Wen-Jie(刘文杰), Chen Han-Wu(陈汉武), Ma Ting-Huai(马廷淮), Li Zhi-Qiang(李志强), Liu Zhi-Hao(刘志昊), and Hu Wen-Bo(胡文博). Chin. Phys. B, 2009, 18(10): 4105-4109.
No Suggested Reading articles found!