Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040302    DOI: 10.1088/1674-1056/24/4/040302
GENERAL Prev   Next  

Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier

Zhao Chao-Ying (赵超樱)a b
a College of Science, Hangzhou Dianzi University, Hangzhou 310018, China;
b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entanglement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
Keywords:  dispersion      multipartite entanglement      optical parametric amplifier  
Received:  11 September 2014      Revised:  23 October 2014      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China (Grant No. KF201401) and the National Natural Science Foundation of China (Grant No. 11404084).
Corresponding Authors:  Zhao Chao-Ying     E-mail:  zchy49@hdu.edu.cn

Cite this article: 

Zhao Chao-Ying (赵超樱) Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier 2015 Chin. Phys. B 24 040302

[1] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[2] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[3] Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[4] Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579
[5] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
[6] Reid M D 1989 Phys. Rev. A 40 913
[7] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys, Rev. Lett. 68 3663
[8] Pereira S F, Ou Z Y and Kimble H J 2002 Phys. Rev. A 62 042311
[9] Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
[10] Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A and Loock P V 2003 Phys. Rev. Lett. 91 080404
[11] Guo J, Zou H X, Zhai Z H, Zhang J X and Gao J R 2005 Phys. Rev. A 71 034305
[12] Loock P V and Furusawa A 2003 Phys. Rev. A 67 052315
[13] Olsen M K and Bradley A S 2006 J. Phys. B: At. Mod. Opt. Phys. 39 127
[14] Tan A H, Wang Y, Jin X L, Su X L, Jia X J, Zhang J, Xie C D and Peng K C 2008 Phys. Rev. A 78 013828
[15] Pfister O, Feng S, Jennings G, Pooser R and Xie D R 2004 Phys. Rev. A 70 020302
[16] Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
[17] Zhao C Y, Tan W H, Xu J R and Ge F 2011 J. Opt. Soc. Am. B 28 1067
[18] Werner M J, Raymer M G, Beck M and Drummond P D 1995 Phys. Rev. A 52 4202
[19] Wenger J, Tualie-Brouri R and Grangier P 2004 Opt. Lett. 29 1267
[20] Lu D M 2014 Acta Phys. Sin. 63 060301 (in Chinese)
[21] Liu P, Feng X M and Jin G R 2014 Chin. Phys. B 23 030310
[22] Takahashi Y, Soderholm J, Hirano K, Namekata N, Machida S, Mori S, Kurimura S, Komatsu S and Inoue S 2008 Phys. Rev. A 77 043801
[23] Zhao C Y and Tan W H 2006 J. Mod. Opt. 53 1965
[24] Carmichael H J 1999 Statistical Methods in Quantum Optics I (Berlin: Springer)
[25] Zhao C Y and Tan W H 2011 J. Mod. Opt. 58 1611
[26] Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
[27] Tan W H 2009 Introduction to Quantum Optics I (Beijing: Science Press) (in Chinese)
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[3] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[4] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[5] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[6] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[7] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[8] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[9] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[10] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[11] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[12] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[13] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[14] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[15] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
No Suggested Reading articles found!