|
|
Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier |
Zhao Chao-Ying (赵超樱)a b |
a College of Science, Hangzhou Dianzi University, Hangzhou 310018, China; b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entanglement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
|
Received: 11 September 2014
Revised: 23 October 2014
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
Fund: Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China (Grant No. KF201401) and the National Natural Science Foundation of China (Grant No. 11404084). |
Corresponding Authors:
Zhao Chao-Ying
E-mail: zchy49@hdu.edu.cn
|
Cite this article:
Zhao Chao-Ying (赵超樱) Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier 2015 Chin. Phys. B 24 040302
|
[1] |
Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
|
[2] |
Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
|
[3] |
Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
|
[4] |
Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579
|
[5] |
Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
|
[6] |
Reid M D 1989 Phys. Rev. A 40 913
|
[7] |
Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys, Rev. Lett. 68 3663
|
[8] |
Pereira S F, Ou Z Y and Kimble H J 2002 Phys. Rev. A 62 042311
|
[9] |
Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
|
[10] |
Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A and Loock P V 2003 Phys. Rev. Lett. 91 080404
|
[11] |
Guo J, Zou H X, Zhai Z H, Zhang J X and Gao J R 2005 Phys. Rev. A 71 034305
|
[12] |
Loock P V and Furusawa A 2003 Phys. Rev. A 67 052315
|
[13] |
Olsen M K and Bradley A S 2006 J. Phys. B: At. Mod. Opt. Phys. 39 127
|
[14] |
Tan A H, Wang Y, Jin X L, Su X L, Jia X J, Zhang J, Xie C D and Peng K C 2008 Phys. Rev. A 78 013828
|
[15] |
Pfister O, Feng S, Jennings G, Pooser R and Xie D R 2004 Phys. Rev. A 70 020302
|
[16] |
Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
|
[17] |
Zhao C Y, Tan W H, Xu J R and Ge F 2011 J. Opt. Soc. Am. B 28 1067
|
[18] |
Werner M J, Raymer M G, Beck M and Drummond P D 1995 Phys. Rev. A 52 4202
|
[19] |
Wenger J, Tualie-Brouri R and Grangier P 2004 Opt. Lett. 29 1267
|
[20] |
Lu D M 2014 Acta Phys. Sin. 63 060301 (in Chinese)
|
[21] |
Liu P, Feng X M and Jin G R 2014 Chin. Phys. B 23 030310
|
[22] |
Takahashi Y, Soderholm J, Hirano K, Namekata N, Machida S, Mori S, Kurimura S, Komatsu S and Inoue S 2008 Phys. Rev. A 77 043801
|
[23] |
Zhao C Y and Tan W H 2006 J. Mod. Opt. 53 1965
|
[24] |
Carmichael H J 1999 Statistical Methods in Quantum Optics I (Berlin: Springer)
|
[25] |
Zhao C Y and Tan W H 2011 J. Mod. Opt. 58 1611
|
[26] |
Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
|
[27] |
Tan W H 2009 Introduction to Quantum Optics I (Beijing: Science Press) (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|