Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037504    DOI: 10.1088/1674-1056/24/3/037504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires

Wu Fang (吴芳)a, Meng Pei-Wen (孟培雯)b, Luo Kang (罗康)b, Liu Yun-Fei (刘云飞)b, Kan Er-Jun (阚二军)c
a School of Science, Nanjing Forestry University, Nanjing 210037, China;
b College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
c Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  First-principles calculations are performed to study the electronic structures and magnetic properties of ZnO nanowires (NM). Our results indicate that the single Zn defect can induce large local magnetic moment (~ 2μB) in the ZnO NWs, regardless of the surface modification. Interestingly, we find that local magnetic defects have strong spin interaction, and favor room-temperature ferromagnetism in bared ZnO NW. On the other hand, although H passivation does not destroy the local magnetic moment of Zn vacancy, it does greatly reduce the spin interaction between magnetic defects. Therefore, our results indicate that H passivation should be avoided in the process of experiments to maintain the room-temperature ferromagnetism.
Keywords:  vacancy      magnetic interaction      ZnO nanowires      DFT calculations  
Received:  16 July 2014      Revised:  15 October 2014      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Gs (II-VI semiconductors)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474165, 21203096, and 11204137), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130031, BK20131420, and BK2012392), and the Fundamental Research Funds for the Central Universities of China (Grant No. 30920130111016).
Corresponding Authors:  Wu Fang     E-mail:  fangwu@mail.ustc.edu.cn

Cite this article: 

Wu Fang (吴芳), Meng Pei-Wen (孟培雯), Luo Kang (罗康), Liu Yun-Fei (刘云飞), Kan Er-Jun (阚二军) Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires 2015 Chin. Phys. B 24 037504

[1] Wolf S, Awschalom D, Buhrman R, Daughton J, Molnár S, Roukes M, Chtchelkanova A and Treger D 2001 Science 294 1488
[2] Zunger A and Lany S 2010 Physics 3 53
[3] Ohno H 1998 Science 281 951
[4] Yamada Y, Ueno K, Fukumura T, Yuan H, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y and Kawasaki M 2011 Science 332 1065
[5] Jungwirth T, Sinova J, Mašek J, Kučera J and MacDonald A 2006 Rev. Mod. Phys. 78 809
[6] Norton D, Pearton S, Hebard A, Theodoropoulou N, Boatner L and Wilson R 2003 Appl. Phys. Lett. 82 239
[7] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[8] Esquinazi P, Spemann D, Höhne R, Setzer A, Han K and Butz T 2003 Phys. Rev. Lett. 91 227201
[9] Garcia M, Merino J, Fernández P E, Quesada A, Venta J, Ruíz González M, Castro G, Crespo P, Llopis J, González-Calbet M and Hernando A 2007 Nano Lett. 7 1489
[10] Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
[11] Venkatesan M, Fitzgerald C and Coey J 2004 Nature 430 630
[12] Zhu X and Su H 2009 Phys. Rev. B 79 165401
[13] Wu H, Stroppa A, Sakong S, Picozzi S, Scheffler M and Kratzer P 2010 Phys. Rev. Lett. 105 267203
[14] Das Pemmaraju C and Sanvito S 2005 Phys. Rev. Lett. 94 217205
[15] Chan J, Lany S and Zunger A 2009 Phys. Rev. Lett. 103 016404
[16] Xia H, Li W, Song Y, Yang X, Liu X, Zhao M, Xia Y, Song C, Wang T, Zhu D, Gong J and Zhu Z 2008 Adv. Mater. 20 4679
[17] Pan H, Yi J, Shen L, Wu R, Yang L, Lin J, Feng Y, Ding Y, Van H and Yin J 2007 Phys. Rev. Lett. 99 127201
[18] Song B, Bao H, Li H, Lei M, Peng T, Jian J, Liu J, Wang W and Chen X 2009 J. Am. Chem. Soc. 131 1376
[19] Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X, Song B, Wang B and Chen X 2011 Phys. Rev. Lett. 106 087205
[20] Kan E, Wu F, Zhang Y, Xiang H, Lu R, Xiao C, Deng K and Su H 2012 Appl. Phys. Lett. 100 072401
[21] Peng H, Xiang H, Wei S, Li S, Xia J and Li J 2009 Phys. Rev. Lett. 102 017201
[22] Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
[23] Kan E, Wu F, Wu H, Xiao C, Xiang H and Deng K 2013 Appl. Phys. Lett. 102 022422
[24] Xiang H and Wei S 2008 Nano Lett. 8 1825
[25] Kim B and Kwon J 2014 Sci. Rep. 4 4379
[26] Bai Y, Yu H, Li Z, Amal R, Lu G and Wang L 2012 Adv. Mater. 24 5850
[27] Zhu R, Zhang W, Li C and Yang R 2013 Nano Lett. 13 5171
[28] McCune M, Zhang W and Deng Y 2012 Nano Lett. 12 3656
[29] Cha S, Jang J, Choi Y, Amaratunga A, Ho G, Welland M, Hasko D, Kang D and Kim J 2006 Appl. Phys. Lett. 89 263102
[30] Bao J, Zimmler M, Capasso F, Wang X and Ren Z 2006 Nano Lett. 6 1719
[31] Zhu G, Yang R, Wang S and Wang Z 2010 Nano Lett. 10 3151
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Perdew J and Wang Y 1992 Phys. Rev. B 45 13244
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 1169
[36] Li J, Jiang Y, Li Y, Yang D, Xu Y and Yan M 2013 Appl. Phys. Lett. 102 072406
[37] Phan T, Zhang Y, Yang D, Nghia N, Thanh T and Yu S 2013 Appl. Phys. Lett. 102 072408
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[8] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[9] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[12] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[13] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[14] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[15] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
No Suggested Reading articles found!