CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays |
Rui Tang(唐睿)1, Yang Xu(徐阳)2, Hong Zhang(张红)1,3,†, and Xin-Lu Cheng(程新路)2,3 |
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China |
|
|
Abstract We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene (DVDGr) and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
|
Received: 10 July 2020
Revised: 03 August 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248). |
Corresponding Authors:
†Corresponding author. E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路) Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays 2021 Chin. Phys. B 30 017804
|
1 Maiera S A and Atwater H A 2005 J. Appl. Phys. 98 011101 2 Karalis A, Lidorikis E, Ibanescu M, Joannopoulos J D and Soljacic M 2005 Phys. Rev. Lett. 95 063901 3 Novotny L and Hulst N 2011 Nat. Photon. 5 83 4 Bell A T 2003 Science 299 1688 5 Maier S A, Kik P G and Atwater H A 2002 Appl. Phys. Lett. 81 1714 6 Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913 7 Cao Y W C, Jin R and Mirkin C A 2002 Science 297 1536 8 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 9 Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol 3 206 10 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630 11 Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405 12 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308 13 Jablan M, Buljan H and Soljacic M 2009 Phys. Rev. B 80 245435 14 Koppens F H L, Chang D E and Abajo F J G 2011 Nano Lett. 11 3370 15 Ozbay E 2006 Science 311 189 16 Boltasseva A and Atwater H A 2011 Science 331 290 17 Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and Abajo F J G 2013 ACS Nano. 7 3635 18 Xia F, Muelle T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839 19 Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano. 4 803 20 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 21 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 22 Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M and Shinohara H 2010 Appl. Phys. Lett. 96 263105 23 Liu P, Arai F and Fukuda T 2006 Appl. Phys. Lett. 89 113104 24 Ribeiro F J, Neaton J B, Louie S G and Cohen M L 2005 Phys. Rev. B 72 75302 25 Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y and Ho K M 2005 Phys. Rev. Lett. 95 205501 26 Pradhan S C and Phadikar J K 2009 Phys. Lett. A 373 1062 27 Duplock E J, Scheffler M and Lindan P J D 2004 Phys. Rev. Lett. 92 225502 28 Lusk M T and Carr L D 2008 Phys. Rev. Lett. 100 175503 29 Sanyal B, Eriksson O, Jansson U and Grennberg H 2009 Phys. Rev. B 79 113409 30 Dai X, Li Y, Zhao J and Zhao B 2011 Physica E 43 1461 31 Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408 32 Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68 33 Gass M H, Bangert U, Bleloch A L, Wang P, Nair R R and Geim A K 2008 Nat. Nanotechnol. 3 676 34 Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano. 5 26 35 Kobayashi Y, Fukui K, Enoki T and Kusakabe K 2006 Phys. Rev. B 73 125415 36 Ugeda M M, Brihuega I, Guinea F and Gomez-Rodriguez J M 2010 Phys. Rev. Lett. 104 096804 37 Yan J, Yuan Z and Gao S 2007 Phys. Rev. Lett. 98 216602 38 Yan J and Gao S 2008 Phys. Rev. B 78 235413 39 Lian K Y, Sa?ek P, Jin M and Ding D 2009 J. Chem. Phys. 130 174701 40 Guidez E B and Aikens C M 2014 Nanoscale 6 11512 41 Cao E, Guo X, Zhang L Q, Shi Y, Lin W H, Liu X C, Fang Y R, Zhou L Y, Sun Y H, Song Y Z, Liang W J and Sun M T 2017 Adv. Mater. Interfaces 4 1700869 42 Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482 43 Nayyar N, Turkowski V and Rahman T S 2012 Phys. Rev. Lett. 109 157404 44 Mu X and Sun M 2020 Mater. Today Phys. 14 100222 45 Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579 46 Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A and Gorbachev R V 2011 Nat. Commun. 2 458 47 Takatsuka Y, Takahagi K, Sano E, Ryzhii V and Otsuji T 2012 J. Appl. Phys. 112 033103 48 Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60 49 Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 50 Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 51 Marinopoulos A G, Reining L, Olevano V, Rubio A, Pichler T, Liu X, Knupfer M and Fink J 2002 Phys. Rev. Lett. 89 076402 52 Niu J, Shin Y J, Lee Y, Ahn J H and Yang H 2012 Appl. Phys. Lett. 100 061116 53 Zhang K, Zhang H and Li C K 2015 Phys. Chem. Chem. Phys. 17 12051 54 Mu X J, Wang J G, Duan G Q, Li Z J, Wen J X and Sun M T 2019 Spectrochim. Acta A 212 188 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|