Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017804    DOI: 10.1088/1674-1056/abaedb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays

Rui Tang(唐睿)1, Yang Xu(徐阳)2, Hong Zhang(张红)1,3,†, and Xin-Lu Cheng(程新路)2,3
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene (DVDGr) and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
Keywords:  plasmon      double vacancy defected graphene      mixed metallic nanoarrays      multi-beam laser      harmonic spectrum  
Received:  10 July 2020      Revised:  03 August 2020      Accepted manuscript online:  13 August 2020
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248).
Corresponding Authors:  Corresponding author. E-mail: hongzhang@scu.edu.cn   

Cite this article: 

Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路) Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays 2021 Chin. Phys. B 30 017804

1 Maiera S A and Atwater H A 2005 J. Appl. Phys. 98 011101
2 Karalis A, Lidorikis E, Ibanescu M, Joannopoulos J D and Soljacic M 2005 Phys. Rev. Lett. 95 063901
3 Novotny L and Hulst N 2011 Nat. Photon. 5 83
4 Bell A T 2003 Science 299 1688
5 Maier S A, Kik P G and Atwater H A 2002 Appl. Phys. Lett. 81 1714
6 Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
7 Cao Y W C, Jin R and Mirkin C A 2002 Science 297 1536
8 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
9 Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol 3 206
10 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
11 Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
12 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
13 Jablan M, Buljan H and Soljacic M 2009 Phys. Rev. B 80 245435
14 Koppens F H L, Chang D E and Abajo F J G 2011 Nano Lett. 11 3370
15 Ozbay E 2006 Science 311 189
16 Boltasseva A and Atwater H A 2011 Science 331 290
17 Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and Abajo F J G 2013 ACS Nano. 7 3635
18 Xia F, Muelle T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839
19 Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano. 4 803
20 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
21 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
22 Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M and Shinohara H 2010 Appl. Phys. Lett. 96 263105
23 Liu P, Arai F and Fukuda T 2006 Appl. Phys. Lett. 89 113104
24 Ribeiro F J, Neaton J B, Louie S G and Cohen M L 2005 Phys. Rev. B 72 75302
25 Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y and Ho K M 2005 Phys. Rev. Lett. 95 205501
26 Pradhan S C and Phadikar J K 2009 Phys. Lett. A 373 1062
27 Duplock E J, Scheffler M and Lindan P J D 2004 Phys. Rev. Lett. 92 225502
28 Lusk M T and Carr L D 2008 Phys. Rev. Lett. 100 175503
29 Sanyal B, Eriksson O, Jansson U and Grennberg H 2009 Phys. Rev. B 79 113409
30 Dai X, Li Y, Zhao J and Zhao B 2011 Physica E 43 1461
31 Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
32 Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
33 Gass M H, Bangert U, Bleloch A L, Wang P, Nair R R and Geim A K 2008 Nat. Nanotechnol. 3 676
34 Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano. 5 26
35 Kobayashi Y, Fukui K, Enoki T and Kusakabe K 2006 Phys. Rev. B 73 125415
36 Ugeda M M, Brihuega I, Guinea F and Gomez-Rodriguez J M 2010 Phys. Rev. Lett. 104 096804
37 Yan J, Yuan Z and Gao S 2007 Phys. Rev. Lett. 98 216602
38 Yan J and Gao S 2008 Phys. Rev. B 78 235413
39 Lian K Y, Sa?ek P, Jin M and Ding D 2009 J. Chem. Phys. 130 174701
40 Guidez E B and Aikens C M 2014 Nanoscale 6 11512
41 Cao E, Guo X, Zhang L Q, Shi Y, Lin W H, Liu X C, Fang Y R, Zhou L Y, Sun Y H, Song Y Z, Liang W J and Sun M T 2017 Adv. Mater. Interfaces 4 1700869
42 Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482
43 Nayyar N, Turkowski V and Rahman T S 2012 Phys. Rev. Lett. 109 157404
44 Mu X and Sun M 2020 Mater. Today Phys. 14 100222
45 Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579
46 Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A and Gorbachev R V 2011 Nat. Commun. 2 458
47 Takatsuka Y, Takahagi K, Sano E, Ryzhii V and Otsuji T 2012 J. Appl. Phys. 112 033103
48 Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60
49 Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
50 Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
51 Marinopoulos A G, Reining L, Olevano V, Rubio A, Pichler T, Liu X, Knupfer M and Fink J 2002 Phys. Rev. Lett. 89 076402
52 Niu J, Shin Y J, Lee Y, Ahn J H and Yang H 2012 Appl. Phys. Lett. 100 061116
53 Zhang K, Zhang H and Li C K 2015 Phys. Chem. Chem. Phys. 17 12051
54 Mu X J, Wang J G, Duan G Q, Li Z J, Wen J X and Sun M T 2019 Spectrochim. Acta A 212 188
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
No Suggested Reading articles found!