INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect |
Zhao Li(李钊), Jing-Ping Xu(徐静平)†, Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿) |
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract A facile method of combining the defect engineering with the dielectric-screening effect is proposed to improve the electrical performance of MoS2 transistors. It is found that the carrier mobility of the transistor after the sulfur treatment on the MoS2 channel is greatly enhanced due to the reduction of the sulfur vacancies during vulcanization of MoS2. Furthermore, as compared to those transistors with HfO2 and SiO2 as the gate dielectric, the Al2O3-gate dielectric MoS2 FET shows a better electrical performance after the sulfur treatment, with a lowered subthreshold swing of 179.4 mV/dec, an increased on/off ratio of 2.11 × 106, and an enhanced carrier mobility of 64.74 cm2/Vs (about twice increase relative to the non-treated MoS2 transistor with SiO2 as the gate dielectric). These are mainly attributed to the fact that a suitable k-value gate dielectric can produce a dominant dielectric-screening effect overwhelming the phonon scattering, increasing the carrier mobility, while a larger k-value gate dielectric will enhance the phonon scattering to counteract the dielectric-screening effect, reducing the carrier mobility.
|
Received: 30 June 2020
Revised: 19 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
81.65.Rv
|
(Passivation)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774064, 61974048, and 61851406). |
Corresponding Authors:
†Corresponding author. E-mail: jpxu@hust.edu.cn
|
Cite this article:
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿) Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect 2021 Chin. Phys. B 30 018102
|
1 Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 2 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 3 Novoselov K S. Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666 4 Yu Z, Ong Z Y, Li S L, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X R 2017 Adv. Funct. Mater. 27 1604093 5 Min S W, Lee H S, Choi H J, Park M K, Nam T, Kim H, Ryu S and Im S 2013 Nanoscale 5 548 6 Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011 7 Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S and Im S 2012 Small 8 3111 8 Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246 9 Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934 10 Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674 11 Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497 12 Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y and Wang X R 2014 Nat. Commun. 5 5290 13 Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317 14 Radisavljevic B and Kis A 2013 Nat. Mater. 12 815 15 Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316 16 Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L and Wang X R 2013 Nat. Commun. 4 2642 17 Ma N and Jena D2014 Phys. Rev. X 4 011043 18 Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N and Akinwande D 2013 ACS Nano 7 5446 19 Li T, Wan B S, Du G, Zhang B S and Zeng Z M 2015 AIP Adv. 5 057102 20 Kang J H, Liu W and Banerjee K 2014 Appl. Phys. Lett. 104 093106 21 Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706 22 Zhang Y W, Li H, Wang H M, Xie H, Liu R, Zhang S L and Qiu Z J 2016 Sci. Rep. 6 29615 23 Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128 24 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107 25 Leong W S, Li Y, Luo X, Nai C T, Quek S Y and Thong J T 2015 Nanoscale 7 10823 26 Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J L and Ni Z H 2014 ACS Nano 8 5738 27 Liu H and Ye P D 2012 IEEE Electron Device Lett. 33 546 28 Lembke D and Kis A 2012 ACS Nano 6 10070 29 Konar A, Fang T and Jena D 2010 Phys. Rev. B 82 115452 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|