Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036801    DOI: 10.1088/1674-1056/24/3/036801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain analysis of free-standing strained silicon-on-insulator nanomembrane

Sun Gao-Di (孙高迪)a b, Dong Lin-Xi (董林玺)a, Xue Zhong-Ying (薛忠营)b, Chen Da (陈达)b, Guo Qing-Lei (郭庆磊)b, Mu Zhi-Qiang (母志强)b
a Key Laboratory of RF Circuits and System of the Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China;
b State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Based on the ultra-thin strained silicon-on-insulator (sSOI) technology, by creatively using a hydrofluoric acid (HF) vapor corrosion system to dry etch the SiO2 layer, a large area of suspended strained silicon (sSi) nanomembrane with uniform strain distribution is fabricated. The strain state in the implemented nanomembrane is comprehensively analyzed by using an UV-Raman spectrometer with different laser powers. The results show that the inherent strain is preserved while there are artificial Raman shifts induced by the heat effect, which is proportional to the laser power. The suspended sSOI nanomembrane will be an important material for future novel high-performance devices.
Keywords:  dry etching      strained silicon-on-insulator      Raman spectrum      strain  
Received:  27 August 2014      Revised:  21 December 2014      Accepted manuscript online: 
PACS:  68.35.Gy (Mechanical properties; surface strains)  
  61.72.uf (Ge and Si)  
  77.80.bn (Strain and interface effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376117 and 61107025) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F040004).
Corresponding Authors:  Dong Lin-Xi     E-mail:  donglinxi@hdu.edu.cn

Cite this article: 

Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强) Strain analysis of free-standing strained silicon-on-insulator nanomembrane 2015 Chin. Phys. B 24 036801

[1] Chu M, Sun Y K, Aghoram U and Thompson S E 2009 Annu. Rev. Mater. Res. 39 203
[2] Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Su B, Wang B and Wang G Y 2013 Acta Phys. Sin. 62 077103 (in Chinese)
[3] Zhao G J, Yang S Y, Liu G P, Liu C B, Sang L, Gu C Y, Liu X L, Wei H Y, Zhu Q S and Wang Z G 2013 Chin. Phys. Lett. 30 098102
[4] Ismail K, Meyerson B S and Wang P J 1991 Appl. Phys. Lett. 58 2117
[5] Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Lü Y, Wang B and Wang G Y 2014 Acta Phys. Sin. 63 017101 (in Chinese)
[6] Ishikawa Y, Wada K, Cannon D D, Liu J F, Luan H C and Kimerling L C 2003 Appl. Phys. Lett. 82 2044
[7] Koester S J, Rim K, Chu J O, Mooney P M, Ott J A and Hargrove M A 2001 Appl. Phys. Lett. 79 2148
[8] Liu X Y, Liu W L, Ma X B, Lv S L, Song Z T and Lin C L 2010 Appl. Surf. Sci. 256 3499
[9] Xiong G, Moutanabbir O, Huang X J, Paknejad S A, Shi X W, Harder R, Reiche M and Robinson I K 2011 Appl. Phys. Lett. 99 114103
[10] Hashemi P, Canonico M, Yang J K W, Gomez L, Berggren K K and Hoyt J L 2008 ECS Transactions 16 57
[11] Hart T R, Aggarwal R L and Lax B 1970 Phys. Rev. B 1 638
[12] Doerk G S, Carraro C and Maboudian R 2010 ACS Nano 4 4908
[13] Moritz H D, Talbott J A, Chandra M, Tseronis J A and Jafri I 2002 U.S. Patent 6334266B1 [2002-01-01]
[14] Yuan H C, Wang G, Ma Z, Roberts M M, Savage D E and Lagally M G 2007 Semicond. Sci. Technol. 22 S72
[15] Mu Z Q, Xue Z Y, Wei X, Chen D, Zhang M, Di Z F and Wang X 2014 Thin Solid Films 557 101
[16] Dombrowski K F, Wolf I D and Dietrich B 1999 Appl. Phys. Lett. 75 2450
[17] Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J. Appl. Phys. 75 8098
[18] Langdo T A, Currie M T, Lochtefeld A, Hammond R, Carlin J A, Erdtmann M, Braithwaite G, Yang V K, Vineis C J, Badawi H and Bulsara M T 2003 Appl. Phys. Lett. 82 4256
[19] Süess M J, Minamisawa R A, Geiger R, Bourdelle K K, Sigg H and Spolenak R 2014 Nano Lett. 14 1249
[20] Picu R C, Borca T T and Pavel M C 2003 J. Appl. Phys. 93 3535
[21] Liu W and Asheghi M 2004 Appl. Phys. Lett. 84 3819.
[22] Li D Y, Wu Y Y, Kin P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
No Suggested Reading articles found!