Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028501    DOI: 10.1088/1674-1056/24/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Baseline optimization of SQUID gradiometer for magnetocardiography

Li Hua (李华)a b c, Zhang Shu-Lin (张树林)a b, Qiu Yang (邱阳)a b c, Zhang Yong-Sheng (张永升)a b, Zhang Chao-Xiang (张朝祥)a b, Kong Xiang-Yan (孔祥燕)a b, Xie Xiao-Ming (谢晓明)a b
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China;
b Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration Between CAS-Shanghai, Shanghai 200050, People's Republic of China and FZJ, D-52425 Julich, Germany;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements. An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance. By placing several magnetometers at different heights along the vertical direction, we could simultaneously obtain the synthetic gradiometers with different baselines. By using the traditional signal-to-noise ratio (SNR) as a performance index, we successfully obtain an optimal baseline for the magnetocardiography (MCG) measurement in a magnetically shielded room (MSR). Finally, we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR. The SNR about 38 dB is obtained in the recorded MCG signal.
Keywords:  SQUID      gradiometer      baseline optimization      magnetocardiography  
Received:  21 July 2014      Revised:  24 September 2014      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  87.55.de (Optimization)  
  52.70.Ds (Electric and magnetic measurements)  
Fund: Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-105).
Corresponding Authors:  Zhang Shu-Lin, Kong Xiang-Yan     E-mail:  zhangsl@mail.sim.ac.cn;xykong@mail.sim.ac.cn

Cite this article: 

Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明) Baseline optimization of SQUID gradiometer for magnetocardiography 2015 Chin. Phys. B 24 028501

[1] Vrba J, "SQUID Gradiometers in Real Environment", In: SQUID Sensors: Fundamentals, Fabrication and Applications, ed. by Weinstock H, NATO ASI Series (Dordrecht/Boston/London: Kluwer Academic Publishers) pp. 149-163
[2] Qiu Y, Liu C, Zhang S L, Zhang G F, Wang Y L, Li H, Zeng J, Kong X Y and Xie X M 2014 Chin. Phys. B 23 088503
[3] Zhang S L, Zhang G F, Wang Y L, Liu M, Li H, Qiu Y, Zeng J, Kong X Y and Xie X M 2013 Chin. Phys. B 22 128501
[4] Garachtchenko A, Matlashov A, Kraus R H and Cantor R 1999 IEEE Trans. Appl. Supercond. 9 3676
[5] Vrba J 1997 Proc. 19th Ann. Int. Conf. IEEE-EMBS, Chicago, IL. USA, p. 1240
[6] Zhang Y, Wolters N, Schubert J, Lomparski D, Banzet M, Panaitov G, Krause H J, Mück M and Braginski A I 2003 IEEE Trans. Appl. Supercond. 13 389
[7] Kang C S, Yu K K, Kim K, Kwon H, Kim J M and Lee Y H 2012 Curr. Appl. Phys. 12 1319
[8] Zhang Y, Wolters N, Lomparski D, Zander W, Banzet M, Krause H J and van Leeuwen P 2003 IEEE Trans. Appl. Supercond. 13 3862
[9] Zhang S L, Wang Y L, Wang H W, Jiang S Q and Xie X M 2009 Phys. Med. Biol. 54 4793
[1] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[2] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[3] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[4] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[5] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
[6] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[7] Baseline optimization for scalar magnetometer array and its application in magnetic target localization
Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇). Chin. Phys. B, 2018, 27(6): 060703.
[8] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[13] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[14] Retrieval of original signals for superconducting quantum interference device operating in flux locked mode
Liu Dang-Ting (刘当婷), Tian Ye (田野), Zhao Shi-Ping (赵士平), Ren Yu-Feng (任育峰), Chen Geng-Hua (陈赓华). Chin. Phys. B, 2015, 24(4): 047402.
[15] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
No Suggested Reading articles found!