Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048507    DOI: 10.1088/1674-1056/abe29b
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Micro-scale photon source in a hybrid cQED system

Ming-Bo Chen(陈明博)1,2, Bao-Chuan Wang(王保传)1,2, Si-Si Gu(顾思思)1,2, Ting Lin(林霆)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡
1 Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  Coherent photon source is an important element that has been widely used in spectroscopy, imaging, detection, and teleportation in quantum optics. However, it is still a challenge to realize micro-scale coherent emitters in semiconductor systems. We report the observation of gain in a cavity-coupled GaAs double quantum dot system with a voltage bias across the device. By characterizing and analyzing the cavity responses to different quantum dot behaviors, we distinguish the microwave photon emission from the signal gain. This study provides a possibility to realize micro-scale amplifiers or coherent microwave photon sources in circuit quantum electrodynamics (cQED) hybrid systems.
Keywords:  SQUID array resonator      double quantum dot      electron-photon coupling      photon emission  
Received:  20 November 2020      Revised:  30 December 2020      Accepted manuscript online:  03 February 2021
PACS:  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61922074, 11674300, 61674132, 11625419, and 11804327), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030601), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY080000).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Micro-scale photon source in a hybrid cQED system 2021 Chin. Phys. B 30 048507

1 Walls D F and Milburn G J2007 Quantum optics (Springer Science & Business Media)
2 Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
3 Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 76 1800
4 Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch J F, Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P and Esteve D 2010 Phys. Rev. Lett. 105 140502
5 Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603
6 Haken H1983 Laser Theory(Springer)
7 McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
8 Xie Z G, Götzinger S, Fang W, Cao H and Solomon G S 2007 Phys. Rev. Lett. 98 117401
9 Nomura M, Kumagai N, Iwamoto S, Ota Y and Arakawa Y 2010 Nat. Phys. 6 279
10 Astafiev O, Inomata K, Niskanen A, Yamamoto T, Pashkin Y A, Nakamura Y and Tsai J 2007 Nature 449 588
11 Li Y Y, Liu J Q, Wang T, Liu F Q, Zhai S Q, Zhang J C, Zhou N, Wang L J, Liu S M and Wang Z G 2015 Chin. Phys. Lett. 32 104203
12 Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Information 3 34
13 Chen Y, Lin F L, Liang X, Jiang N Q 2019 Chin. Phys. Lett. 36 070302
14 Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
15 Liu Y Y, Petersson K D, Stehlik J, Taylor J M and Petta J R 2014 Phys. Rev. Lett. 113 036801
16 Stockklauser A, Maisi VF, Basset J, Cujia K, Reichl C, Wegscheider W, Ihn T, Wallraff A and Ensslin K 2015 Phys. Rev. Lett. 115 046802
17 Samkharadze M, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
18 Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
19 Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179
20 Cubaynes T, Delbecq M R, Dartiailh M C, Assouly R, Desjardins M M, Contamin L C, Bruhat L E, Leghtas Z, Mallet F, Cottet A and Kontos T 2019 npj Quantum Information 5 47
21 Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Applied 5 044004
22 Wei X Y, Pan J Z, Lu Y P, Jiang L J, Li Z S, Lu S, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Cao H C, Wang H B, Xu W W, Sun G Z and Wu P H 2020 Chin. Phys. B 29 128401
23 Zheng G, Samkharadze N,Noordam M L, Kalhor N, Brousse D, Sammak A, Scappucci G and Vandersypen L M K 2019 Nat. Nanotech. 14 742
24 Hartke T R, Liu Y Y, Gullans M J and Petta J R 2018 Phys. Rev. Lett. 120 097701
25 Landig A J, Koski J V, Scarlino P, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2019 Phys. Rev. Lett. 122 213601
26 Gullans M J, Liu Y Y, Stehlik J, Petta J R and Taylor J M 2015 Phys. Rev. Lett. 114 196802
28 Liu Y Y, Stehlik J, Eichler C, Gullans M J, Taylor J M and Petta J R 2015 Science 347 285
29 Stockklauser A, Scarlino P, Koski JV, Gasparinetti S, Andersen CK, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030
30 Viennot J J, Dartiailh M C, Cottet A and Kontos T 2015 Science 349 408
31 Wang B, Lin T, Li H, Gu S, Chen M, Guo G, Jiang H, Hu X, Cao G and Guo G 2021 Science Bulletin 66 332
32 Frey T, Leek P J, Beck M, Faist J, Wallraff A, Ensslin K, Ihn T and Büttiker M 2012 Phys. Rev. B 86 115303
33 Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu H, Cao G, Xiao M, Wang T, Zhang J J and Guo G P 2018 J. Appl. Phys. 123 174305
34 Pompeo N, Torokhtii K, Leccese F, Scorza A, Sciuto S and Silva E IEEE International Instrumentation and Measurement Technology Conference, May 22-25, 2017, Turin, Italy, p. 1
35 Deng C, Otto M and Lupascu A 2013 J. Appl. Phys. 114 054504
[1] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[2] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[3] A quantum walk in phase space with resonator-assisted double quantum dots
Zhi-Hao Bian(边志浩), Hao Qin(秦豪), Xiang Zhan(詹翔), Jian Li(李剑), Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(2): 020307.
[4] Spin-polarized current in double quantum dots
Li Ai-Xian (李爱仙), Duan Su-Qing (段素青 ). Chin. Phys. B, 2012, 21(11): 117201.
[5] Spin-dependent thermoelectric transport through double quantum dots
Wang Qiang (王强), Xie Hai-Qing (解海卿), Jiao Hu-Jun (焦虎军), Li Zhi-Jian (李志坚), Nie Yi-Hang (聂一行 ). Chin. Phys. B, 2012, 21(11): 117310.
[6] The binding energy of a hydrogenic impurity in self-assembled double quantum dots
Zhang Hong(张红), Wang Xue(王学), Zhao Jian-Feng(赵剑锋), and Liu Jian-Jun(刘建军) . Chin. Phys. B, 2011, 20(12): 127301.
[7] Shot noise in electron transport through a double quantum dot: a master equation approach
Ou-Yang Shi-Hua(欧阳仕华), Lam Chi-Hang(林志恒), and You Jian-Qiang(游建强). Chin. Phys. B, 2010, 19(5): 050519.
[8] Magnetotransport through an Aharonov-Bohm ring with parallel double quantum dots coupled to ferromagnetic leads
Wu Shao-Quan(吴绍全), Hou Tao(侯涛), Zhao Guo-Ping(赵国平), and Yu Wan-Lun(余万伦). Chin. Phys. B, 2010, 19(4): 047202.
[9] Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads
Yan Cong-Hua(闫从华),Wu Shao-Quan(吴绍全), Huang Rui(黄睿), and Sun Wei-Li(孙威立). Chin. Phys. B, 2008, 17(1): 296-302.
No Suggested Reading articles found!