Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098501    DOI: 10.1088/1674-1056/26/9/098501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modulation depth of series SQUIDs modified by Josephson junction area

Jie Liu(刘杰)1, He Gao(高鹤)2,3, Gang Li(李刚)1, Zheng Wei Li(李正伟)2, Kamal Ahmada1, Zhang Ying Shan(张颖珊)1, Jian She Liu(刘建设)1, Wei Chen(陈炜)1
1 Tsinghua National Laboratory for Information Science and Technology, Department of Microelectronics and Nanoelectronics, Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
2 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The superconducting quantum interference device (SQUID) amplifier is widely used in the field of weak signal detection for its low input impedance, low noise, and low power consumption. In this paper, the SQUIDs with identical junctions and the series SQUIDs with different junctions were successfully fabricated. The Nb/Al-AlOx/Nb trilayer and input Nb coils were prepared by asputtering equipment. The SQUID devices were prepared by a sputtering and the lift-off method. Investigations by AFM, OM and SEM revealed the morphology and roughness of the Nb films and Nb/Al-AlOx/Nb trilayer. In addition, the current-voltage characteristics of the SQUID devices with identical junction and different junction areas were measured at 2.5 K in the He3 refrigerator. The results show that the SQUID modulation depth is obviously affected by the junction area. The modulation depth obviously increases with the increase of the junction area in a certain range. It is found that the series SQUID with identical junction area has a transimpedance gain of 58 Ω approximately.

Keywords:  superconducting quantum interference device (SQUID)      Josephson junction      transition edge sensor  
Received:  29 March 2017      Revised:  24 May 2017      Accepted manuscript online: 
PACS:  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11653001), the National Basic Research Program of China (Grant No. 2011CBA00304), and Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089314).

Corresponding Authors:  Wei Chen     E-mail:  weichen@tsinghua.edu.cn

Cite this article: 

Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜) Modulation depth of series SQUIDs modified by Josephson junction area 2017 Chin. Phys. B 26 098501

[1] Lee A T, Richards P L, Nam S W, Cabrera B and Irwin K 1996 Appl. Phys. Lett. 69 1801
[2] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Phys. B. 23 118502
[3] Li H, Zhang S L, Qiu Y, Zhang Y S, Zhang C X, Kong X Y and Xie X M 2015 Chin. Phys. B. 24 028501
[4] Qiu Y, Liu C, Zhang S L, Zhang G F, Wang Y L, Li H, Zeng J, Kong X Y and Xie X M 2014 Chin. Phys. B 23 088503
[5] Schwan D, Bertoldi F, Cho S, Dobbs M, Guesten R, Halverson N, Holzapfel W, Kreysa E, Lanting T and Lee A 2003 New Astron. Rev. 47 933
[6] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection (New York: Springer) p. 63
[7] Irwin K 1995 Appl. Phys. Lett. 66 1998
[8] Ullom J N and Bennett D A 2015 Supercond. Sci. Technol. 28 084003
[9] de Korte P A, Beyer J, Deiker S, Hilton G C, Irwin K D, MacIntosh M, Nam S W, Reintsema C D, Vale L R and Huber M E 2003 Rev. Sci. Instrum. 74 3807
[10] Irwin K, Niemack M, Beyer J, Cho H, Doriese W, Hilton G, Reintsema C, Schmidt D, Ullom J and Vale L 2010 Supercond. Sci. Technol. 23 034004
[11] Mates J, Hilton G, Irwin K, Vale L and Lehnert K 2008 Appl. Phys. Lett. 92 023514
[12] Chervenak J, Irwin K D, Grossman E N, Martinis J M, Reintsema C D and Huber M 1999 Appl. Phys. Lett. 74 4043
[13] Huber M E, Neil P A, Benson R G, Burns D A, Corey A M, Flynn C S, Kitaygorodskaya Y, Massihzadeh O, Martinis J M and Hilton G 2001 IEEE T. Aaapl. Supercon. 11 1251
[14] Prêle D, Voisin F, Piat M, Decourcelle T, Perbost C, Chapron C, Rambaud D, Maestre S, Marty W and Montier L 2016 J. Low Temp. Phys. 184 363
[15] Tuttle J, DiPirro M, Shirron P, Welty R and Radparvar M 1996 Cryogenics 36 879
[16] Clarke J and Braginski A I 2004 The SQUID Handbook Vol. 1 p. 34
[17] Clarke J, Goubau W M and Ketchen M B 1976 J. Low Temp. Phys. 25 99
[18] Tesche C D and Clarke J 1977 J. Low Temp. Phys. 29 301
[19] Chen Z, He G F, Zhang Q Y, Liu J S, Li T F and Chen W 2015 Acta Phys. Sin. 64 128501 (in Chinese)
[20] Weinstock H 2012 SQUID Sensors: Fundamentals, Fabrication and Applications. (Berlin: Springer Science & Business Media)
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[6] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[7] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[8] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[9] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[10] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[11] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[12] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[13] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
[14] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[15] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
No Suggested Reading articles found!