Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060703    DOI: 10.1088/1674-1056/27/6/060703
GENERAL Prev   Next  

Baseline optimization for scalar magnetometer array and its application in magnetic target localization

Li-Ming Fan(樊黎明)1,2, Quan Zheng(郑权)1, Xi-Yuan Kang(康曦元)3, Xiao-Jun Zhang(张晓峻)1, Chong Kang(康崇)1,2
1 College of Science, Harbin Engineering University, Harbin 150001, China;
2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
3 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
Abstract  Generally, a magnetic target can be described with six parameters, three describing the position and three describing the magnetic moment. Due to a lack of sufficient components from one magnetometer, we need more than one magnetometer when locating the magnetic target. Thus, a magnetometer array should be designed. The baseline of the array is an important factor that affects the localization accuracy of the target. In this paper, we focus on the localization of a static target by using a scalar magnetometer array. We present the scalar magnetometer array with a cross-shaped structure. We propose a method of determining the optimal baseline according to the parameters of the magnetometer and detection requirements. In the method, we use the traditional signal-to-noise ratio (SNR) as a performance index, and obtain the optimal baseline of the array by using the Monte Carlo method. The proposed method of determining the optimal baseline is verified in simulation. The arrays with different baselines are used to locate a static magnetic target. The results show that the location performance is better when using the array with the optimal baseline determined by the proposed method.
Keywords:  scalar magnetometer array      baseline optimization      Monte Carlo simulation      magnetic anomaly  
Received:  22 October 2017      Revised:  14 March 2018      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  91.25.Rt (Magnetic anomalies; modeling and interpretations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61174192).
Corresponding Authors:  Chong Kang     E-mail:  kangchongheu@163.com

Cite this article: 

Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇) Baseline optimization for scalar magnetometer array and its application in magnetic target localization 2018 Chin. Phys. B 27 060703

[1] Tantum S L, Yu Y and Collins L M 2008 IEEE Geoscience and Remote Sensing Letters 5 103
[2] Liu R and Wang H 2010 Procedia Engineering 7 1
[3] Wahlstrom N and Gustafsson F 2014 IEEE Trans. Signal Process. 62 545
[4] Iacca G, Bakker F L and Wortche B H 2014 Appl. Soft Comput. 23 460
[5] Song S, Qiao W, Li B, Hu C, Ren H and Meng Q H 2013 IEEE Trans. Magn. 50 1
[6] Zhou Q W, Tong G J, Li B Q and Yuan X B 2012 IEEE Trans. Magn. 48 2340
[7] Birsan M 2011 IEEE Trans. Magn. 47 409
[8] Weitschies W, Blume H and Monnikes H 2010 European Journal of Pharmaceutics & Biopharmaceutics 74 93
[9] McGary J E 2009 IEEE Trans. Magn. 45 3351.
[10] Wynn W M 1995 Proceedings of SPIE The International Society for Optical Engineering 2496 357
[11] Nara T, Suzuki S and Ando S 2006 IEEE Trans. Magn. 42 3291.
[12] Yin G, Zhang Y, Li Z, Fan H and Ren G 2016 J. Magn. Magn. Mater. 402 1
[13] Lee K M and Li M 2016 IEEE Trans. Magn. 52 1
[14] Sui Y, Leslie K and Clark D 2017 IEEE Magn. Lett. 8 1
[15] Lenz J and Edelstein S 2006 IEEE Sensors Journal 6 631
[16] McFee J and Das Y 1981 IEEE Trans. Antenn. Propag. 29 282
[17] Zalevsky Z, Bregman Y, Salomonski N and Zafrir H 2012 J. Appl. Geophys. 84 70
[18] Nelson H H and McDonald J R 2001 IEEE Transactions on Geoscience and Remote Sensing 39 1139
[19] Fan L, Kang C, Zhang X and Wan S 2016 Pure Appl. Geophys. 173 2065
[20] Wynn W M 1999 Detection and identification of visually obscured targets (CRC Press) p. 337
[21] Sheinker A, Shkalim A, Salomonski N, Ginzburg B, Frumkis L and Kaplan B Z 2007 Sensors and Actuators A:Physical 138 105
[22] Wu Z, Wang Y and Xing J 2016 Chin. Phys. B 25 013103
[23] Harrison R L, Granja C and Leroy C 2010 AIP Conf. Proc. p. 17
[24] Schmidt P and Clark D 2006 The Leading Edge 25 75
[25] Sheinker A, Ginzburg B, Salomonski N, Dickstein P A, Frumkis L and Kaplan B Z 2012 IEEE Transactions on Geoscience and Remote Sensing, 50 1095
[26] Alimi R, Weiss E, Ram-Cohen T, Geron N and Yogev I 2015 Sensors-Basel 15 23788
[27] Hu C, Meng Q H, Song S and Dai H 2009 IEEE Magn. Lett. 45 3092
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[5] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!