Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097401    DOI: 10.1088/1674-1056/23/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions

Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越)
Applied Superconductivity Research Center, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing step-edge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/Φ 0, a white flux noise of 29 μΦ 0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.
Keywords:  superconducting quantum interference device (SQUID)      YBa2Cu3O7-δ (YBCO)      step-edge junction      radio frequency  
Received:  25 December 2013      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  74.72.-h (Cuprate superconductors)  
  68.37.Ps (Atomic force microscopy (AFM))  
  74.78.-w (Superconducting films and low-dimensional structures)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00106), the National Natural Science Foundation of China (Grant No. 11074008), and the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100001120006).
Corresponding Authors:  Ma Ping     E-mail:  maping@pku.edu.cn

Cite this article: 

Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越) Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions 2014 Chin. Phys. B 23 097401

[1] Koelle D, Kleiner R, Ludwig F, Dantsker E and Clarke J 1999 Rev. Mod. Phys. 71 631
[2] Yi H R, Gustafsson M, Winkler D, Olsson E and Claeson T 1996 J. Appl. Phys. 79 9213
[3] Millar A J, Romans E J, Carr C, Eulenburg A, Donaldson G B and Pegrum C M 2001 IEEE Transactionson Applied Superconductivity 11 1351
[4] Gohng J, Lee E N, Song I H, Sok J, Park S J and Lee J W 1997 IEEE Transactionson Applied Superconductivity 7 3694
[5] Wang Q, Ma P, Lu H, Tang X Z, Hua N and Tang F K 2009 Chin. Phys. B 18 5566
[6] Wang W Y, Zhao C, Lin Y Z, Zhang S L, Xie X M and Jiang S Q 2013 Acta Phys. Sin. 62 148703 (in Chinese)
[7] Clarke J and Braginski A I 2004 The SQUID Handbook (Berlin: Wiley-VCH Verlag) pp. 112-115
[8] Herrmann K, Kunkel G, Siegel M, Schubert J, Zander W, Braginski A I, Jia C L, Kabius B and Urban K 1995 J. Appl. Phys. 78 1131
[9] Wu C H, Chen M J, Chen J C, Chen K L, Yang H C, Hsu M S, Lai T S, Tsai Y S, Horng H E, Chen J H and Jeng J T 2006 Rev. Sci. Instrum. 77 033901
[10] Jaycox J M and Ketchen M B 1981 IEEE Transactions on Magnetics 17 400
[11] Gao J, Yang T, Ma P and Dai Y D 2010 Acta Phys. Sin. 59 5044 (in Chinese)
[1] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[5] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[6] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[7] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[8] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[9] Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET
Jun Wang(王军), Xiao-Mei Peng(彭小梅), Zhi-Jun Liu(刘志军), Lin Wang(王林), Zhen Luo(罗震), Dan-Dan Wang(王丹丹). Chin. Phys. B, 2018, 27(2): 027201.
[10] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[11] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[12] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[13] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[14] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[15] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
No Suggested Reading articles found!