Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040702    DOI: 10.1088/1674-1056/ab7801
GENERAL Prev   Next  

A synthetic optically pumped gradiometer for magnetocardiography measurements

Shu-Lin Zhang(张树林)1,2,3, Ning Cao(曹宁)1,4
1 Joint Laboratory of Bioimaging Technology and Applications, CAS-SIMIT&MEDI, Shanghai 201899, China;
2 State Key Laboratory of Functional Materials for Informatics, Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences(CAS), Shanghai 200050, China;
3 Centre for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, China;
4 Shanghai Medi Instruments Ltd., Shanghai 201899, China
Abstract  Magnetocardiography (MCG) measurement is important for investigating the cardiac biological activities. Traditionally, the extremely weak MCG signal was detected by using superconducting quantum interference devices (SQUIDs). As a room-temperature magnetic-field sensor, optically pumped magnetometer (OPM) has shown to have comparable sensitivity to that of SQUIDs, which is very suitable for biomagnetic measurements. In this paper, a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free (SERF) conditions within a moderate magnetically shielded room (MSR). The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2. Under a baseline of 100 mm, noise cancellation of about 30 dB was achieved. MCG was successfully measured with a signal to noise ratio (SNR) of about 37 dB. The synthetic gradiometer technique was very effective to suppress the residual environmental fields, demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.
Keywords:  optically pumped magnetometer (OPM)      magnetocardiography (MCG)      gradiometer  
Received:  13 December 2019      Revised:  08 February 2020      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  87.85.Ox (Biomedical instrumentation and micro-electro-mechanical systems (MEMS))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61701486).
Corresponding Authors:  Shu-Lin Zhang     E-mail:

Cite this article: 

Shu-Lin Zhang(张树林), Ning Cao(曹宁) A synthetic optically pumped gradiometer for magnetocardiography measurements 2020 Chin. Phys. B 29 040702

[1] Geselowitz D B 1979 IEEE Trans. Biomed. Eng. BME-26 497
[2] Kwong J S, Leithäuser B, Park J W and Yu C M 2013 Int. J. Cardiol. 167 1835
[3] Kwon H, Kim K, Lee Y H, Kim J M, Yu K K, Chung N and Ko Y G 2010 Circ. J. 74 1424
[4] Inaba T, Nakazawa Y, Kato Y, Hattori A, Kimura T, Hoshi T, Ishizu T, Seo Y, Sato A, Sekiguchi Y, Nogami A, Watanabe S, Horigome H, Kawakami Y and Aonuma K 2017 Supercond. Sci. Technol. 30 114003
[5] Park J W, Hill P M, Chung N, Hugenholtz P G and Jung F 2005 A. N. E. 10 312
[6] Tao R, Zhang S L, Huang X, Tao M F, Ma J, Ma S X, Zhang C X, Zhang T X, Tang F K, Lu J P, Shen C X and Xie X M 2019 IEEE Trans. Biomed. Eng. 66 1658
[7] Pizzella V, Penna S D, Gratta C D and Romani G L 2001 Supercond. Sci. Technol. 14 R79
[8] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[9] Shah V K and Wakai Ro T 2013 Phys. Med. Biol. 58 6065
[10] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 NeuroImage 149 404
[11] Li J D, Quan W, Zhou B Q, Wang Z, Lu J X, Hu Z H, Liu G and Fang J C 2018 IEEE Sens. J. 18 8198
[12] Xia H, Baranga A B A, Hoffman D and Romalis M V 2006 Appl. Phys. Lett. 89 211104
[13] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Munoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657
[14] Savukov Y J, I and Newman S 2019 Appl. Phys. Lett. 114 143702
[15] Li J J, Du P C, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703
[1] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[2] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[3] Baseline optimization of SQUID gradiometer for magnetocardiography
Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(2): 028501.
[4] A SQUID gradiometer module with large junction shunt resistors
Qiu Yang (邱阳), Liu Chao (刘超), Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Li Hua (李华), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(8): 088503.
[5] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[6] Multichannel fetal magnetocardiography using SQUID bootstrap circuit
Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Liu Ming (刘明), Li Hua (李华), Qiu Yang (邱阳), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2013, 22(12): 128501.
[7] High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation
Zhang Ming-Jian(张鸣剑), Lang Pei-Lin(郎佩琳), Peng Zhi-Hui(彭智慧), Chen Ying-Fei(陈莺飞), Chen Ke(陈珂), and Zheng Dong-Ning(郑东宁). Chin. Phys. B, 2006, 15(8): 1903-1908.
No Suggested Reading articles found!