Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068501    DOI: 10.1088/1674-1056/25/6/068501

An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

Hua Li(李华)1,2, Shu-Lin Zhang(张树林)1, Chao-Xiang Zhang(张朝祥)1, Xiang-Yan Kong(孔祥燕)1, Xiao-Ming Xie(谢晓明)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89×10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately.

Keywords:  SQUID      magnetometer      Tesla/volt coefficient calibration      three-dimensional Helmholtz coil  
Received:  02 December 2015      Revised:  31 January 2016      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  06.20.fb (Standards and calibration)  
  07.55.Db (Generation of magnetic fields; magnets)  

Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

Corresponding Authors:  Shu-Lin Zhang     E-mail:

Cite this article: 

Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明) An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils 2016 Chin. Phys. B 25 068501

[1] Andrä W and Nowak H 2007 Magnetism in Medicine: A Handbook, 2nd edn. (Berlin: WILEY-VCH Verlag Berlin GmbH) pp. 101-152
[2] Qiu Y, Li H, Zhang S L, Wang Y L, Kong X Y, Zhang C X, Zhang Y S, Xu X F, Yang K and Xie X M 2015 Chin. Phys. B 24 078501
[3] Melo C F D, Araújo R L, Ardjomand L M, Quoirin N S R, Ikeda M and Costa A A 2009 Measurement 42 1330
[4] Tao W, Gao J, Wei Y K, Liu Z H, Zhang C, Zhang Y, Wang H and Ma P 2012 10th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, October 22-26, 2012, Xian, China, p. 277
[5] Zhang Y S, Qiu Y, Zhang C X, Li H, Zhang S L, Wang Y L, Xu X F, Ding H S and Kong X Y 2014 Acta Phys. Sin. 63 228501 (in Chinese)
[6] Adachi Y, Higuchi M, Oyama D, Haruta Y, Kawabata S and Uehara G 2014 IEEE Trans. Mag. 50 5001304
[7] Vivaldi V, Sorrentino A, Sommariva S, Piana M, Rombetto S and Russo M 2014 Biomag 2014, August 24-28, 2014, Halifax, Canada
[8] Pasquarelli A, Melis M, Marzetti L, Muller H P and Erné S N 2004 Neurol. Clin. Neurophysiol 2004:94, PMID: 16012682
[9] Bruno A C and Costa Ribeiro P 1991 Rev. Sci. Instrum. 62 1005
[10] Chella F, Zappasodi F, Marzetti L, Della Penna S and Pizzella V 2012 Phys. Med. Biol. 57 4855
[11] Alldred J C and Scollar I 1967 J. Sci. Instrum. 44 755
[12] Lee S G, Kang C S and Chang J W 2007 IEEE Trans. Appl. Supercond. 17 3769
[13] Russell C T, Anderson B, Baumjohann W, et al. 2014 Space Sci. Rev.
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[5] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[6] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[7] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[8] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[9] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[10] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[11] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[12] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[13] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[14] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[15] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
No Suggested Reading articles found!