Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024221    DOI: 10.1088/1674-1056/24/2/024221
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal

Zhang Peng (张鹏)a, Kong Chui-Gang (孔垂岗)a, Zheng Chao (郑超)a, Wang Xin-Qiang (王新强)b, Ma Yue (马跃)a, Feng Jin-Bo (冯金波)a, Jiao Yu-Qiu (矫玉秋)a, Lu Gui-Wu (卢贵武)a
a College of Science, China University of Petroleum, Beijing 102249, China;
b State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The geometric structure, electronic structure, and optical properties of CdHg(SCN)4 crystal are calculated by using the density functional perturbation theory and Green function screening Coulomb interaction approximation. The band gap of CdHg(SCN)4 crystal is calculated to be 3.198 eV, which is in good agreement with the experimental value 3.265 eV. The calculated second-order nonlinear optical coefficients are d14=1.2906 pm/V and d15=5.0928 pm/V, which are in agreement with the experimental results (d14=(1.4± 0.6) pm/V and d15=(6.0± 0.9) pm/V). Moreover, it is found that the contribution to the valence band mainly comes from Cd-4d, Hg-5d states, and the contributions to the valence band top and the conduction band bottom predominantly come from C-2p, N-2p, and S-3p states. The second-order nonlinear optical effect of CdHg(SCN)4 crystal results mainly from the internal electronic transition of (SCN)-.
Keywords:  CdHg(SCN)4 crystal      nonlinear optical properties      band gap      Green function screening Coulomb interaction approximation      density functional perturbation theory  
Received:  06 May 2014      Revised:  07 July 2014      Accepted manuscript online: 
PACS:  42.70.Mp (Nonlinear optical crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51372140), the Youth Scientist Fund of Shandong Province, China (Grant No. BS2011CL025), and the Basic Discipline Research Fund of China University of Petroleum, Beijing, China (Grant No. 01JB0169).
Corresponding Authors:  Lu Gui-Wu     E-mail:  lugw@cup.edu.cn

Cite this article: 

Zhang Peng (张鹏), Kong Chui-Gang (孔垂岗), Zheng Chao (郑超), Wang Xin-Qiang (王新强), Ma Yue (马跃), Feng Jin-Bo (冯金波), Jiao Yu-Qiu (矫玉秋), Lu Gui-Wu (卢贵武) First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal 2015 Chin. Phys. B 24 024221

[1] Yuan D R, Xu D, Liu M G, Yu W T, Fang Q, Hou W B, Bing Y H, Sun S Y and Jiang M H 1996 Chin. Sci. Bull. 41 1572
[2] Chen D, Xiao H Y, Jia W, Chen H, Zhou H G, Li Y, Ding K N and Zhang Y F 2012 Acta Phys. Sin. 61 127103 (in Chinese)
[3] Yu B H and Chen D 2014 Acta Phys. Sin. 63 047101 (in Chinese)
[4] Usuda M, Hamada N, Kotani T and Schilfgaarde M 2002 Phys. Rev. B 66 125101
[5] Zhu X J and Louie S G 1991 Phys. Rev. B 43 14142
[6] Lu T Y and Huang M C 2007 Chin. Phys. 16 62
[7] Patterson C H 2006 Phys. Rev. B 74 144432
[8] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[9] Jiang H 2010 Acta Phys. Chim. Sin. 26 1017
[10] Qian S X and Wang G M 2001 Nonlinear Optics (Shanghai: Fudan University Press) pp. 28-31, 67-69, 577-578 (in Chinese)
[11] Marek V 2005 "First-principles Study of the Nonlinear Responses of Insulators to Electric Fields: Applications to Ferroelectric Oxides" (Ph. D. Dissertation) (De Liege: Faculté des Sciences of University De Liege)
[12] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R and Allan D C 2005 Z. Kristallogr 220 558
[13] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[14] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[15] Yan Y X, Feng Q, Yuan D R, Tian Y P, Liu Z, Wang X M, Jiang M H, Williams D, Siu A and Cai Z G 1999 Chin. Chem. Lett. 10 257
[16] Yuan D R, Xu D, Liu M G, Qi F, Yu W T, Hou W B, BingY H, Sun S Y, Liu M H and Liu J 1997 Appl. Phys. Lett. 70 544
[17] Zhang G H, Liu M G, Xu D and Yuan D R 2000 J. Mater. Sci. Lett. 19 1255
[18] Lin Z S, Wang Z Z, Chen C T and Li M X 2001 Acta Phys. Sin. 50 1145 (in Chinese)
[1] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[2] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[3] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[4] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[5] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[6] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[7] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[8] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[11] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[12] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[13] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[14] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[15] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
No Suggested Reading articles found!