|
|
Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals |
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田) |
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130000, China |
|
|
Abstract As is well known, the basic intrinsic properties of materials can be significant for their practical applications. In this work, the room-temperature absorption, transmittance, reflectance spectra, and relative photoelectricities parameters of the Mg4Ta2O9 crystals are demonstrated. Meanwhile, the polarized Raman spectra of Mg4Ta2O9 crystals are also described. The room-temperature photoluminescence (PL) and the temperature-dependent PL for Mg4Ta2O9 crystals are obtained. Significantly, we observe a phonon-participated PL process in Mg4Ta2O9.
|
Received: 14 February 2020
Revised: 09 April 2020
Accepted manuscript online:
|
PACS:
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
07.55.Jg
|
(Magnetometers for susceptibility, magnetic moment, and magnetization measurements)
|
|
Fund: Project supported by the National Key Research and Development Program, China (Grant No. 2017YFA0403704), the National Natural Science Foundation of China (Grant Nos. 11304113, 11474127, and 11574112), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Qiang Zhou
E-mail: zhouqiang@jlu.edu.cn
|
Cite this article:
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田) Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals 2020 Chin. Phys. B 29 083301
|
[1] |
Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
|
[2] |
Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
|
[3] |
Xiao J, Liu P, Wang C X and Yang G W 2017 Prog. Mater. Sci. 87 140
|
[4] |
Jiang Y, Xia H, Zhang J, Yang S, Jiang H and Chen B 2015 J. Mater. Sci. Tech. 31 1232
|
[5] |
Blasse G and Bril A 1971 J. Solid State Chem. 3 69
|
[6] |
Stevels A and Vink A 1974 J. Lumin. 8 443
|
[7] |
Macke A J H 1976 J. Solid State Chem. 19 221
|
[8] |
Sun D C, Senz S and Hesse D 2004 J. Eur. Ceram. Soc. 24 2453
|
[9] |
Navale S C and Ravi V 2005 Mater. Sci. Eng.:B 119 189
|
[10] |
Gaikwad A B, Navale S C, Samuel V, Murugan A V and Ravi V 2006 Mater. Res. Bul. 41 347
|
[11] |
Wu H T, Yang C H, Wu W B and Yue Y L 2012 Surf. Rev. Lett. 19 1250024
|
[12] |
Huang C and Chen J 2009 J. Cryst. Growth 311 627
|
[13] |
Sun D, Senz S and Hesse D 2006 J. Eur. Ceram. Soc. 26 3181
|
[14] |
Coldea R, Tennant D, Wheeler E, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P and Kiefer K 2010 Science 327 177
|
[15] |
Yang Z, Chang Y and Wei L 2007 Appl. Phys. Lett. 90 042911
|
[16] |
Leite D M G and Silva J H D 2008 J. Phys.:Condens. Matter 20 055001
|
[17] |
Zhuo S Y, Liu X C, Huang W, Kong H K, Xin J and Shi E W 2019 Chin. Phys. B 28 017101
|
[18] |
Noh Y W, Jin I S, Park S H and Jung J W 2019 J. Mater. Sci. Technol.
|
[19] |
Yu X, Cui H, Zhu M, Xia Z and Sai Q 2019 Chin. Phys. B 28 077801
|
[20] |
Xue Y, Zheng L, Jiang D, Sai Q, Su L and Xu J 2019 Chin. Phys. B 28 037802
|
[21] |
Yao T S, Tang C Y, Yang M, Zhu K J, Yan D Y, Yi C J, Feng Z L, Lei H C, Li C H and Wang L 2019 Chin. Phys. Lett. 36 068101
|
[22] |
Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J and Lei W 2020 Chin. Phys. Lett. 37 018101
|
[23] |
Li L, Liu W, Han B, Jin X, Li F, Wang W, Zhou Q, Xu D and Cui T 2015 RSC Adv. 5 66988
|
[24] |
Niu X, Zhang H, Pei Z, Shi N, Sun C and Gong J 2019 J. Mater. Sci. Techn. 35 88
|
[25] |
Chen P, Zeng S, Zhao Y, Kang S, Zhang T and Song S 2020 J. Mater. Sci. Technol. 41 88
|
[26] |
Mei Q J, Li C Y, Guo J D, Huang S X, Zhang X H and Wu H T 2013 Ceram. Int. 39 9145
|
[27] |
Li L, Fan Y, Wang D, Feng G and Xu D 2011 Cryst. Res. Technol. 46 475
|
[28] |
Xu D, Gu Y, Li L, Shen H, Yang H, Zhou Q, Shi Z, Yuan H and Cui T 2014 J. Phys. Chem. Solids 75 1361
|
[29] |
Wemple S H and DiDomenico M 1969 Phys. Rev. Lett. 23 1156
|
[30] |
Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
|
[31] |
Kan A, Ogawa H, Yokoi A and Nakamura Y 2007 J. Eur. Ceram. Soc. 27 2977
|
[32] |
Ogawa H, Kan A, Ishihara S and Higashida Y 2003 J. Eur. Ceram. Soc. 23 2485
|
[33] |
Gui D Y, Wang C H, Zhu W and Meng C 2018 J. Alloys Compd. 730 434
|
[34] |
Li L, Duan D, Zhou Q, Xu D, Cui T, Liu B, Shi Z and Yuan H 2015 J. Alloys Compd. 619 240
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|