INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optical and electrical properties of InGaZnON thin films |
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平) |
Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract The substrate temperature (Ts) and N2 partial pressure (PN2) dependent optical and electrical properties of sputtered InGaZnON thin films are studied. With the increased Ts and PN2, the thin film becomes more crystallized and nitrified. The Hall mobility, free carrier concentration (Ne), and electrical conductivity increase with the lowered interfacial potential barrier during crystal growing. The photoluminescence (PL) intensity decreases with the increased Ne. The band gap (Eg) narrows and the linear refractive index (n1) increases with the increasing concentration of N in the thin films. The Stokes shift between the PL peak and absorption edge decreases with Eg. The n1, dispersion energy, average oscillator wavelength, and oscillator length strength all increase with n1. The single oscillator energy decreases with n1. The nonlinear refractive index and third order optical susceptibility increase with n1. The Seebeck coefficient, electron effective mass, mean free path, scattering time, and plasma energy are all Ne dependent.
|
Received: 29 August 2019
Revised: 10 October 2019
Accepted manuscript online:
|
PACS:
|
81.05.Hd
|
(Other semiconductors)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61674107), Shenzhen Key Lab Fund, China (Grant No. ZDSYS 20170228105421966), and Science and Technology Plan of Shenzhen, China (Grant No. JCYJ20170302150335518). |
Corresponding Authors:
Fan Ye
E-mail: yefan@szu.edu.cn
|
Cite this article:
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平) Optical and electrical properties of InGaZnON thin films 2020 Chin. Phys. B 29 018105
|
[1] |
Liu P T, Chang C H, Fuh C S and Sze S M 2016 J. Disp. Technol. 12 1070
|
[2] |
Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Appl. Phys. Lett. 102 193505
|
[3] |
Raja J, Jang K, Balaji N, Choi W, Trinh T T and Yi J S 2013 Appl. Phys. Lett. 102 083505
|
[4] |
Liu P T, Chou Y T, Teng L F, Li F H, Fuh C S and Shieh H P D 2011 IEEE Elec. Dev. Lett. 32 1397
|
[5] |
Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
|
[6] |
Kamiya T, Nomura K and Hosono H 2009 J. Disp. Technol. 5 468
|
[7] |
Chen X, He G, Lv J, Liu M, Wang P, Chen X and Sun Z 2015 J. Alloy. Compd. 647 1035
|
[8] |
Chen X F, He G, Gao J, Zhang J W, Xiao D Q, Jin P and Deng B 2015 J. Alloy Compd. 632 533
|
[9] |
Yamazaki S, Koyama J, Yamamoto Y and Okamoto K 2012 Society of Information Display Gigest 183
|
[10] |
Djuris A and Leung Y 2006 Small 2 944
|
[11] |
Larciprete M and Centini M 2015 Appl. Phys. Rev. 2 031302
|
[12] |
Malik G, Jaiswal J, Mourya S and Chandr R 2017 J. Appl. Phys. 122 143105
|
[13] |
Sanal K, Vishnu K, Shijeesh M R and Jayaraj M K 2014 Proc. SPIE 9161 91611B
|
[14] |
Shaaban E, El-Hagary M, Moustafa E, Hassan H, Ismail1 Y, EmamIsmail M and Ali A 2016 Appl. Phys. A 122 20
|
[15] |
Jilani A, Abdel-wahab M, Zahran H, Yahia I and Al-Ghamdi A 2016 Appl. Phys. A 122 862
|
[16] |
Wang Y Q, Zhu J H and Tang W 2014 Appl. Phys. Lett. 104 212103
|
[17] |
Tang J, Deng L Y, Tay C B, Zhang X H, Chai J W, Qin H, Liu H W, Venkatesan T and Chua S J 2014 J. Appl. Phys. 115 033111
|
[18] |
Lynch D, Zhu B, Levin B, Muller D, Ast D, Greene R and Thompson M 2014 Appl. Phys. Lett. 105 262103
|
[19] |
Cai P G, Zhen D, Xu X J, Liu Y L, Chen N B, Wei G R and Sui C H 2010 Mater. Sci. Eng. B 171 116
|
[20] |
Tiwari N, Chauhan R, Shieh H P D, Liu P T and Huang Y 2016 IEEE Elec. Dev. Lett. 63 1578
|
[21] |
Sagara P, Shishodia P, Mehraa R, Okada H, Wakahara A and Yoshida A 2007 J. Lumin. 126 800
|
[22] |
Korotcenkov G, Brinzari V and Ham M 2018 Crystals 8 1
|
[23] |
Takagi A, Nomura K, Ohta H, Yanagi H, Kamiya T, Hirano M and Hosono H 2005 Thin Solid Films 486 38
|
[24] |
Wang Y Q, Zhu J H and Tang W 2014 Appl. Phys. Lett. 104 212103
|
[25] |
Tang J, Deng L Y, Tay C B, Zhang X H, Chai J W, Qin H, Liu H W, Venkatesan T and Chua S J 2014 J. Appl. Phys. 115 033111
|
[26] |
Volintiru I, Creatore M and Sanden M 2008 J. Appl. Phys. 103 033704
|
[27] |
Cole K S and Cole R H 1941 J. Chem. Phys. 9 341
|
[28] |
Cole K S and Cole R H 1942 J. Chem. Phys. 10 98
|
[29] |
Hamberg I and Granqvist C 1986 J. Appl. Phys. 60 R123
|
[30] |
Tharayila N, Sagarb S, Raveendrana R and Vaidyan A 2007 Physica B 399 1
|
[31] |
Ryu M, Kim T S, Son K S, Kim H S, Park J S, Seon J B, Seo S J, Kim S J, Lee E, Lee H, Jeon S H, Han S and Lee S Y 2012 IEEE International Electron Devices Meeting 112
|
[32] |
Hamberg I and Granqvist C 1986 J. Appl. Phys. 60 R123
|
[33] |
Fung T C, Chuang C S, Nomura K, Shieh H P D, Hosono H and Kanicki J 2008 J. Inform. Disp. 9 21
|
[34] |
Yakuphanoglu F, Cukurovali A and Yilmaz I 2004 Physica B 351 53
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|