Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117308    DOI: 10.1088/1674-1056/24/11/117308
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of the SnSe-metal contacts: First-principles study

Dai Xian-Qi (戴宪起)a b, Wang Xiao-Long (王小龙)a, Li Wei (李伟)a, Wang Tian-Xing (王天兴)a
a College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China;
b School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract  The geometries and electronic properties of SnSe/metal contact have been investigated using first-principles calculation. It is found that the geometries of monolayer SnSe were affected slightly when SnSe adsorbs on M (M=Ag, Au, Ta) substrate. Compared with the corresponding free-standing monolayer SnSe, the adsorbed SnSe undergoes a semiconductor-to-metal transition. The potential difference Δ V indicates that SnSe/Ta contact is the best candidate for the Schottky contact of the three SnSe/M contacts. Two types of current-in-plane (CIP) structure, where a freestanding monolayer SnSe is connected to SnSe/M, are identified as the n-type CIP structure in SnSe/Ag contact and p-type CIP structure in SnSe/Au and SnSe/Ta contact. The results can stimulate further investigation for the multifunctional SnSe/metal contact.
Keywords:  first-principles      monolayer SnSe      metal-semiconductor contact      current-in-plane structure  
Received:  11 May 2015      Revised:  09 July 2015      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1304518 and U1404109).
Corresponding Authors:  Dai Xian-Qi     E-mail:  xqdai@htu.cn

Cite this article: 

Dai Xian-Qi (戴宪起), Wang Xiao-Long (王小龙), Li Wei (李伟), Wang Tian-Xing (王天兴) Electronic properties of the SnSe-metal contacts: First-principles study 2015 Chin. Phys. B 24 117308

[1] Kim C, Jang J, Shin J, Choi J W, Seo J H, Kim W, Park J, Seo J O and Leem S J;2001 Phys. Rev. B 64 113302
[2] Berthod C, Binggeli N and Baldereschi A;2003 Phys. Rev. B 68 085323
[3] Tung R T;1992 Phys. Rev. B 45 13509
[4] Liu X H, Wang Y, Burton J D and Tsymba E Y;2013 Phys. Rev. B 88 165139
[5] Valitova I, Amato M, Mahvash F, Cantele G, Maffucci A, Santato C, Martel R and Cicoira F;2013 Nanoscale 5 4638
[6] Borriello I, Cantele G and Ninno D;2012 Nanoscale 5 291
[7] Li J F, Liu W S, Zhao L D and Zhou M;2010 NPG Asia Mater. 2 152
[8] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G;2014 Nat. Lett. 508 373
[9] Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A and Rios J S N;2013 Thin Solid Films 535 390
[10] Huang Y C, Ling C Y, Liu H and Wang S F;2013 RSC Adv. 4 6933
[11] Lefebvre I, Szymanski M A, Olivier-Fourcade J and Jumas J C;1998 Phys. Rev. B 58 1896
[12] Okereke N A and Ekpunobi A J 2010 Chalcogenide Lett. 7 531
[13] Antunez P D, Buckley J J and Brutchey R L;2011 Nanoscale 3 2399
[14] Xue D J, Tan J, Hu J S, Hu W, Guo Y G and Wan L J;2012 Adv. Mater. 24 4528
[15] Pejova B and Grozdanov I;2007 Thin Solid Films 515 5203
[16] Subramanian B, Sanjeeviraja C and Jayachandran M;2002 J. Cryst. Growth 234 421
[17] Nordin S, Zainal A T, Wan M M Y, Zulkarnain Z, Hikmat S H and Masatoshi F;2014 Electrochim. Acta 139 238
[18] Biçer M and Şişmani;2011 Appl. Surf. Sci. 275 2944
[19] Mathews N R;2011 Sol. Energy 86 1010
[20] Boscher N D, Carmalt C J, Palgrave R G and Parkin I P;2008 Thin Solid Films 516 4750
[21] Popescu M, Sava F, Lörinczi A, Socol G, Mihailescu I N and Tomescu A;2007 J. Non-Cryst. Solids 353 1865
[22] Murali K R;2014 J. Mater. Sci.: Mater. Electron. 25 2374
[23] John K J, Pradeep B and Mathai E;1994 J. Mater. Sci. 29 1581
[24] Hohenberg P and Kohn W;1964 Phys. Rev. 136 B864
[25] Kohn W and Sham L J;1965 Phys. Rev. 140 A1133
[26] Blöchl P E;1994 Phys. Rev. B 50 17953
[27] Kresse G and Joubert D;1999 Phys. Rev. B 59 1758
[28] Marsman M and Kresse G;2006 J. Chem. Phys. 125 104101
[29] Kresse G and Furthmüller J;1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[31] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C;1992 Phys. Rev. B 46 6671
[32] Gong K, Zhang L, Ji W and Guo H;2014 Phys. Rev. B 90 125441
[33] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J;2009 Phys. Rev. B 79 195425
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!