Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117305    DOI: 10.1088/1674-1056/24/11/117305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors

Luo Jun (罗俊)a, Zhao Sheng-Lei (赵胜雷)a, Mi Min-Han (宓珉瀚)a, Hou Bin (侯斌)b, Yang Xiao-Lei (杨晓蕾)b, Zhang Jin-Cheng (张进成)a, Ma Xiao-Hua (马晓华)a b, Hao Yue (郝跃)a
a Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China;
b School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
Abstract  Frequency-dependent conductance measurements were carried out to investigate the trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors (HEMTs) quantitatively. For the non-recessed HEMT, the trap state density decreases from 2.48×1013 cm-2·eV-1 at an energy of 0.29 eV to 2.79×1012 cm-2·eV-1 at ET= 0.33 eV. In contrast, the trap state density of 2.38×1013-1.10×1014 cm-2·eV-1 is located at ET in a range of 0.30-0.33 eV for the recessed HEMT. Thus, lots of trap states with shallow energy levels are induced by the gate recess etching. The induced shallow trap states can be changed into deep trap states by 350 ℃ annealing process. As a result, there are two different types of trap sates, fast and slow, in the annealed HEMT. The parameters of the annealed HEMT are ET= 0.29-0.31 eV and DT = 8.16×1012-5.58×1013 cm-2·eV-1 for the fast trap states, and ET= 0.37-0.45 eV and DT = 1.84×1013-8.50×1013 cm-2·eV-1 for the slow trap states. The gate leakage currents are changed by the etching and following annealing process, and this change can be explained by the analysis of the trap states.
Keywords:  AlGaN/GaN high-electron mobility transistors (HEMTs)      annealing      reactive ion etching      trap states  
Received:  11 June 2015      Revised:  09 July 2015      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002 and 61106106).
Corresponding Authors:  Hao Yue     E-mail:  yhao@xidian.edu.cn

Cite this article: 

Luo Jun (罗俊), Zhao Sheng-Lei (赵胜雷), Mi Min-Han (宓珉瀚), Hou Bin (侯斌), Yang Xiao-Lei (杨晓蕾), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Hao Yue (郝跃) Trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors 2015 Chin. Phys. B 24 117305

[1] Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K;2004 IEEE Electron Dev. Lett. 25 161
[2] Zhang K, Cao M Y, Lei X Y, Zhao S L, Yang L Y, Zheng X F, Ma X H and Hao Y;2013 Chin. Phys. B 22 097303
[3] Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y;2013 Chin. Phys. B 22 117307
[4] Kumar V, Kuliev A, Tanaka T, Otoki Y and Adesida I;2003 Electron. Lett. 39 1758
[5] Oka T and Nozawa T 2008 IEEE Electron Dev. Lett. 29 668
[6] Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEE Electron Dev. Lett. 31 189
[7] Okamoto Y, Ando Y, Hataya K, Nakayama T, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N and Kuzuhara M;2004 IEEE Trans. Microw. Theory Tech. 52 2536
[8] Shul R J, Zhang L, Baca A G, Willison C G, Han J, Pearton S J, Lee K P and Ren F;2001 Solid State Electron. 45 13
[9] Chan C Y, Lee T C, Hsu S S H, Chen L and Lin Y S;2007 Jpn. J. Appl. Phys. 46 478
[10] Kuzmík J, Javorka P, Marso M and Kordoš P;2002 Semicond. Sci. Technol. 17 L76
[11] Stoklas R, Gregušová D, Novák J, Vescan A and Kordoš P;2008 Appl. Phys. Lett. 93 124103
[12] Kordoš P, Stoklas R, Gregušová D and Novák J;2009 Appl. Phys. Lett. 94 223512
[13] Lanford W B, Tanaka T, Otoki Y and Adesida I;2005 Electron. Lett. 41 449
[14] Kim H, Lee J, Liu D and Lu W;2005 Appl. Phys. Lett. 86 143505
[15] Kuzmík J 2001 IEEE Electron Dev. Lett. 22 510
[1] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[2] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[6] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[7] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[12] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[13] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[14] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[15] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
No Suggested Reading articles found!