Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 115202    DOI: 10.1088/1674-1056/24/11/115202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells

Peng Ling (彭玲)a b, Mei Yang (梅杨)a, Chen Shu-Fen (陈淑芬)a, Zhang Yu-Pei (张玉佩)a, Hao Jing-Yu (郝敬昱)a, Deng Ling-Ling (邓玲玲)a b, Huang Wei (黄维)a c
a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Synergistic Innovation Center for Advanced Materials, Nanjing 210023, China;
b School of Opto-Electronic Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
c Key Laboratory of Flexible Electronics & Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
Abstract  The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (JSC) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)-based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromagnetic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances.
Keywords:  organic solar cells      nanorods      LSPR effect      scattering  
Received:  03 April 2015      Revised:  01 June 2015      Accepted manuscript online: 
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the Ministry of Science and Technology, China (Grant No. 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays, China.
Corresponding Authors:  Chen Shu-Fen, Huang Wei     E-mail:  iamsfchen@njupt.edu.cn;iamdirector@fudan.edu.cn

Cite this article: 

Peng Ling (彭玲), Mei Yang (梅杨), Chen Shu-Fen (陈淑芬), Zhang Yu-Pei (张玉佩), Hao Jing-Yu (郝敬昱), Deng Ling-Ling (邓玲玲), Huang Wei (黄维) Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells 2015 Chin. Phys. B 24 115202

[1] Coakley K M and McGehee M D;2004 Chem. Mater. 16 4533
[2] Moon J S, Takacs C, Cho S, Coffin R C, Kim H, Bazan G C and Heeger A J;2010 Nano Lett. 10 4005
[3] Peet J M L, Senatore M L, Heeger A J and Bazan G C;2009 Adv. Mater. 21 1521
[4] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C, Gao J, Li G and Yang Y;2013 Nat. Commun. 4 1446
[5] Zhou H, Zhang Y, Seier J, Collins S D, Luo C, Bazan G C, Nguyen T Q and Heeger A J;2013 Adv. Mater. 25 1646
[6] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z and Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)
[7] Zhou R L, Chen X S, Zeng Y, Zhang J B, Chen H B, Wang S W, Lu W, Li H J, Xia H and Wang L L 2008 Acta Phys. Sin. 57 3506 (in Chinese)
[8] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[9] Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song G F and Xu Y 2014 Chin. Phys. B 23 038803
[10] Mahmoud A Y, Zhang J, Ma D, Izquierdo R and Truong V V;2012 Org. Electron. 13 3102
[11] Tan K S, Chuang M K, Chen F C and Hsu C S;2013 ACS Appl. Mater. Interfaces 5 12419
[12] Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W;2015 Chin. Phys. B 24 045201
[13] Heo S W, Lee E J, Song K W, Lee J Y and Moon D K;2013 Org. Electron. 14 1931
[14] Li X, Choy W C H, Lu H, Sha W E I and Ho A H P;2013 Adv. Funct. Mater. 23 2728
[15] Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O and Heeger A J;2011 Angew. Chem. Int. Ed. 50 5519
[16] Chen X, Zhao C, Rothberg L and Ng M K;2008 Appl. Phys. Lett. 93 123302
[17] Heo M, Cho H, Jung J W, Jeong J R and Park S;2011 Adv. Mater. 23 5689
[18] Morfa A J, Rowlena K L, Reilly T H, Romero M J and Lagemaatb J V D;2008 Appl. Phys. Lett. 92 013504
[19] Qu D, Liu F, Huang Y, Xie W and Xu Q;2011 Opt. Express 19 24795
[20] Wu B, Wu X, Guan C, Tai K F, Yeow E K L, Fan H J, Mathews N and Sum T C;2013 Nat. Commun. 4 2004
[21] Anger P, Bharadwaj P and Novotny L;2006 Phys. Rev. Lett. 96 113002
[22] Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H and Huang W;2014 Appl. Phys. Lett. 104 213903
[23] Zhou J, Xue M, Shen H, Wu Z, Kim S and Ho J J;2011 Appl. Phys. Lett. 98 151110
[24] Janković V, Yang Y, You J, Dou L, Liu Y, Cheung P, Chang J P and Yang Y;2013 ACS Nano 7 3815
[25] Lu L, Luo Z, Xu T and Yu L;2013 Nano Lett. 13 59
[26] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[27] Dijk M A V, Tchebotareva A L, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognetc L and Lounisc B 2006 Phys. Chem. Chem. Phys. 8 3486
[28] Hsiao Y S, Charan S, Wu F Y, Chien F C, Chu C W, Chen P and Chen F C;2012 J. Phys. Chem. C 116 20731
[29] Kim K and Carroll D L;2005 Appl. Phys. Lett. 87 203113
[30] Mihailetchi V D, Blom P W M, Hummelen J C, Rispens M T;2003 J. Appl. Phys. 94 6849
[31] Sun J, Zhu Y, Xu X, Lan L, Zhang L, Cai P, Chen J, Peng J and Cao Y;2012 J. Phys. Chem. C 116 14188
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[12] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[13] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[14] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!