Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 115201    DOI: 10.1088/1674-1056/24/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency.
Keywords:  inductively coupled plasmas      mode transition      hysteresis      fluid simulation  
Received:  30 April 2015      Revised:  31 July 2015      Accepted manuscript online: 
PACS:  52.25.-b (Plasma properties)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11205025, 11305023, and 11075029).
Corresponding Authors:  Zhao Shu-Xia     E-mail:  zhaonie@dlut.edu.cn

Cite this article: 

Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年) Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model 2015 Chin. Phys. B 24 115201

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd edn.) (New York: Wiley-Interscience)
[2] Hopwood J;1992 Plasma Sources Sci. Technol. 1 109
[3] Dipeso G, Vahedi V, Hewett D W and Rognlien T D;1994 J. Vac. Sci. Technol. A 12 1387
[4] Kang D H, Lee D K, Kim K B and Lee J J 2004 Appl. Phys. Lett. 84 3283
[5] Kortshagen U, Gibson N D and Lawler J E 1996 J. Phys. D: Appl Phys. 29 1224
[6] Chung C W and Chang H Y;2002 Appl. Phys. Lett. 80 1725
[7] Czerwiec T and Graves D B;2004 J. Phys. D: Appl. Phys. 37 2827
[8] Kempkes P and Soltwisch;2009 J. Phys. D: Appl. Phys. 42 085206
[9] Lee Y W, Lee H L and Chung T H;2011 J. Appl. Phys. 109 113302
[10] Liu W, Gao F, Zhao S X, Li X C and Wang Y N;2013 Phys. Plasmas 20 123513
[11] Singh S V and Pargmann C;2008 J. Appl. Phys. 104 083303
[12] Cunge G, Crowley B, Vender D and Turner M M;1999 Plasma Sources Sci. Technol. 8 576
[13] Kang N and Gaboriau F;2011 J. Phys. D: Appl. Phys. 44 442001
[14] Ostrikov K N and Xu S;2000 J. Appl. Phys. 88 2268
[15] El-Fayoumi I M, Jonesy I R and Turner M M;1998 J. Phys. D: Appl. Phys. 31 3082
[16] Lee M H, Lee K H, Hyun D S and Chung C W;2007 Appl. Phys. Lett. 90 191502
[17] Turner M M and Lieberman M A;1999 Plasma Sources Sci. Technol. 8 313
[18] Daltrini A M, Moshkalev S A, Morgan T J, Piejak R B and Graham W G;2008 Appl. Phys. Lett. 92 061504
[19] Zhao S X and Wang Y N;2010 J. Phys. D: Appl. Phys. 43 275203
[20] Gao F, Zhao S X, Li X S and Wang Y N;2010 Phys. Plasmas 17 103507
[21] Lee H C and Chung C W;2012 Thin Solid Films 521 185
[22] Lee H C, Kim D H and Chung C W;2013 Appl. Phys. Lett. 102 234104
[23] Xu H J, Zhao S X, Zhang Y R, Gao F, Li X C and Wang Y N 2015 Phys Plasmas 22 043508
[24] Zhao S X, Xu X, Li X C andWang Y N 2009 J. Appl. Phys. 105 083306
[25] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J and Itikawa Y;2008 J. Phys. Chem. Ref. Data 37 913
[26] Tawara H, Itikawa Y, Nishimura H and Yoshino M;1990 J. Phys. Chem. Ref. Data 19 617
[27] Salabas A and Brinkmann R P;2005 Plasma Sources Sci. Technol. 14 S53
[28] Zhang Y R, Xu X, Bogaerts A and Wang Y N;2012 J. Phys. D: Appl. Phys. 45 015202
[29] Ventzek P L G, Hoekstra R J and Kushner M J;1994 J. Vac. Sci. Technol. B 12 461
[30] Chabert P and Braithwaite N 2011 Physics of Radio Frequency Plasmas (New York: Cambridge University Press)
[1] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[2] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[3] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[4] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[5] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[6] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[7] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[8] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[9] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[10] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[11] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[12] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[15] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
No Suggested Reading articles found!