Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010303    DOI: 10.1088/1674-1056/24/1/010303
GENERAL Prev   Next  

Disordered quantum walks in two-dimensional lattices

Zhang Rong(张融)a b, Xu Yun-Qiu(徐韵秋)b, Xue Peng(薛鹏)a c
a Department of Physics, Southeast University, Nanjing 211189, China;
b School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
c State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  

The properties of the two-dimensional quantum walk with point, line, and circle disorders in phase are reported. Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states. We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker + coin system and the overlap between the initial state of the whole system and the localized stationary states.

Keywords:  quantum walk      Anderson localization      phase disorder  
Received:  04 May 2014      Revised:  04 August 2014      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  05.40.Fb (Random walks and Levy flights)  
  71.23.-k (Electronic structure of disordered solids)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11174052), the National Basic Research Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University.

Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com

Cite this article: 

Zhang Rong(张融), Xu Yun-Qiu(徐韵秋), Xue Peng(薛鹏) Disordered quantum walks in two-dimensional lattices 2015 Chin. Phys. B 24 010303

[1] Aharonov Y, Davidovich Y L and Zagury N 1993 Phys. Rev. A 48 1687
[2] Guillotin-Plantard N and Schott R 2006 Dynamic Random Walks: Theory and Application (Amsterdam: Elsevier)
[3] Xue P 2013 The Journal of Computational and Theoretical Nanoscience: Special Issue: Theoretical and Mathematical Aspects of the Discrete Time Quantum Walk 10 1
[4] Qin H and Xue P 2014 Chin. Phys. B 23 010301
[5] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
[6] Ambainis A 2003 International Journal of Quantum Information 1 507
[7] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proc. 35th ACM Symposium on Theory of Computing (STOC), pp. 59-68
[8] Shenvi N, Kempe J and Whaley K B 2002 Phys. Rev. A 67 052307
[9] Wu J J, Zhang B D, Tang Y H, Qiang X G and Wang H Q 2013 Chin. Phys. B 22 050304
[10] Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
[11] Ahlbrecht A, Alberti A, Meschede D, Scholz V B, Werner A H and Werner R F 2012 New J. Phys. 14 073050
[12] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[13] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicol F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
[14] Wójcik A, Luczak T, Kurzyński P, Grudka A, Gdala T and Bzdega M B 2012 Phys. Rev. A 85 012329
[15] Zhang R, Xue P and Twamley J 2014 Phys. Rev. A 89 042317
[16] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[17] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, E. Demler E and White A G 2012 Nat. Commun. 3 882
[18] Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331
[19] Xue P and Sanders B C 2014 Phys. Rev. A 90 012331
[20] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
[21] Childs A M 2009 Phys. Rev. Lett. 102 180501
[22] Childs A M, Gosset D and Webb Z 2013 Science 339 791
[23] Lovett N B, Cooper S, Everitt M, Trevers M and Kendon V 2010 Phys. Rev. A 81 042330
[24] Kendon V and Maloyer O 2007 Theoretical Computer Science 394 187
[25] Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
[26] Xue P 2012 Chin. Phys. B 21 010308
[27] Xue P 2012 Chin. Phys. B 21 100306
[28] Xue P 2011 Chin. Phys. B 20 100310
[29] Kurzyński P and Wójcik A 2011 Phys. Rev. A 83 062315
[30] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Guzik A A and White A G 2010 Phys. Rev. Lett. 104 153602
[31] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
[32] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502
[33] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Jex I and Silberhorn Ch 2011 Phys. Rev. Lett. 106 180403
[34] Peruzzo A, Lobino M, Matthews J C F, N. Matsuda N, Politi A, K. Poulios K, Zhou X, Lahini Y, Ismail N, Wörhoff K, Bromberg Y, Silberberg Y, Thompson M G and OBrien J L 2010 Science 329 1500
[35] Schreiber A, Gábris A, Rohde P P, Laiho K, Štefanák M, Potoček V, Hamilton C, Jex I and Silberhorn Ch 2012 Science 336 55
[36] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicola F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
[37] Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009
[38] Xue P, Qin H and Tang B 2014 Scientific Reports 4 4825
[39] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307
[40] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[41] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[42] Lu D, Zhu J, Zou P, Peng X, Yu Y, Zhang S, Chen Q and Du J 2010 Phys. Rev. A 81 022308
[43] Cote R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
[44] Karski M, Förster L, Choi J, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 5937
[45] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[46] Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[47] Xue P and Sanders B C 2008 New J. Phys. 8 053025
[48] Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
[49] Xue P and Sanders B C 2009 Phys. Rev. Lett. 103 183602
[50] Kendon V and Tregenna B 2003 Phys. Rev. A 67 042315
[51] Kendon V and Tregenna B 2004 Lect. Notes Phys. 633 253
[52] Wójcik A Luczak T, Kurzynski P, Grudka A, Gdala T and Bednarska-Bzdega M 2012 Phys. Rev. A 85 012329
[53] Segawa E 2013 Journal of Computational and Theoretical Nanoscience: Special Issue: Theoretical and Mathematical Aspects of the Discrete Time Quantum Walk 10 1583
[54] Segev M, Silberberg Y and Christodoulides D N 2013 Nat. Photon. 7 197
[55] Li Z J, Izaac J A and Wang J B 2013 Phys. Rev. A 87 012314
[56] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[57] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[58] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[1] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[4] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[5] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[6] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[7] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[8] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[9] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[10] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[11] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[12] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[13] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[14] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[15] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
No Suggested Reading articles found!