Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020304    DOI: 10.1088/1674-1056/abcfa1
GENERAL Prev   Next  

State transfer on two-fold Cayley trees via quantum walks

Xi-Ling Xue(薛希玲)† and Yue Ruan(阮越)
School of Computer Science and Technology, Anhui University of Technology, Maanshan 243032, China
Abstract  Perfect state transfer (PST) has great significance due to its applications in quantum information processing and quantum computation. The main problem we study in this paper is to determine whether the two-fold Cayley tree, an extension of the Cayley tree, admits perfect state transfer between two roots using quantum walks. We show that PST can be achieved by means of the so-called nonrepeating quantum walk [Phys. Rev. A 89 042332 (2014)] within time steps that are the distance between the two roots; while both the continuous-time quantum walk and the typical discrete-time quantum walk with Grover coin approaches fail. Our results suggest that in some cases the dynamics of a discrete-time quantum walk may be much richer than that of the continuous-time quantum walk.
Keywords:  perfect state transfer      two-fold Cayley tree      quantum walk  
Received:  23 September 2020      Revised:  03 November 2020      Accepted manuscript online:  02 December 2020
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61802002 and 61701004), the Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF162), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171458).
Corresponding Authors:  Corresponding author. E-mail: stmxue@163.com   

Cite this article: 

Xi-Ling Xue(薛希玲) and Yue Ruan(阮越) State transfer on two-fold Cayley trees via quantum walks 2021 Chin. Phys. B 30 020304

1 Childs A M 2009 Phys. Rev. Lett. 102 180501
2 Lovett N B, Cooper S, Everitt M, Trevers M and Kendon V 2010 Phys. Rev. A 81 042330
3 Andrade F M and da Luz M G E 2009 Phys. Rev. A 80 052301
4 Shenvi N, Kempe J and K Birgitta W 2003 Phys. Rev. A 67 052307
5 Hillery M, Reitzner D and Bu\vzek V 2010 Phys. Rev. A 81 062324
6 Xue X L, Ruan Y and Liu Z H 2019 Quantum Inf. Process. 18 50
7 Wong T G 2015 Quantum Inf. Process. 14 1767
8 Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288
9 Britt B C 2020 Quantum Eng. 2 e29
10 Sun F 2020 Quantum Eng. 2 e35
11 Pei P, Huang H F, Guo Y Q, Zhang X Y and Dai J F 2018 Chin. Phys. B 27 024203
12 Wang M, Wu R B, Lin J T, Zhang J H, Fang Z W, Chai Z F and Cheng Y 2019 Quantum Eng. 1 e9
13 Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
14 Bachman R, Fredette E, Fuller J, Landry M, Opperman M, Tamon C and Tollefson A2011 Quantum Inf. Comput. 12 0293
15 Cheung W C and Godsil C 2011 Linear Algebra Appl. 435 2468
16 Pal H and Bhattacharjya B 2017 Linear Multilinear A. 65 2245
17 Tan Y, Feng K and Cao X 2019 Linear Algebra Appl. 563 331
18 Ahmadi B, Haghighi M H S and Mokhtar A 2020 Linear Algebra Appl. 584 326
19 Chakraborty S, Novo L, Ambainis A and Omar Y 2016 Phys. Rev. Lett. 116 100501
20 Barr K, Proctor T, Allen D and Kendon V M2014 Quantum Inform. Comput. 14 417
21 \vStefa\vn\'ak M and Shoup\'y S 2016 Phys. Rev. A 94 022301
22 \vStefa\vn\'ak M and Shoup\'y S 2017 Quantum Inf. Process. 16 1
23 Kurzynski P and Wojcik A 2011 Phys. Rev. A 83 062315
24 Yalcinkaya I and Gedik Z 2015 J. Phys. A 48 225302
25 Shang Y, Wang Y, Li M and Lu R 2019 Europhys. Lett. 124 60009
26 Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331
27 Ekiz C 2004 Phys. Lett. A 327 374
28 Ekiz C 2009 Commun. Theor. Phys. 52 539
29 Coutinho G 2014 Quantum State Transfer in Graphs (Ph.D. Dissertation) (Waterloo: University of Waterloo)
30 Dheeraj M N and Brun T A 2015 Phys. Rev. A 91 062304
31 Proctor T J, Barr K E, Hanson B, Martiel S, Pavlovic V, Bullivant A and Kendon V M 2014 Phys. Rev. A. 89 042332
32 Christandl M, Datta N, Dorlas T C, Ekert A, Kay A and Landahl A J 2005 Phys. Rev. A 71 032312
33 Hochstadt H 1967 Archiv der Mathematik 18 201
34 Erzan A and Tuncer A 2020 Linear Algebra Appl. 586 111
35 Kirkland S, McLaren D, Pereira R, Plosker S and Zhang X H 2019 Linear Multilinear Algebra 67 1043
36 Grover L K 1997 Phys. Rev. Lett. 79 325
[1] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[2] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[3] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[4] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[5] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[6] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[7] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[8] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[9] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[10] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[11] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[12] Search algorithm on strongly regular graphsbased on scattering quantum walks
Xi-Ling Xue(薛希玲), Zhi-Hao Liu(刘志昊), Han-Wu Chen(陈汉武). Chin. Phys. B, 2017, 26(1): 010301.
[13] A quantum walk in phase space with resonator-assisted double quantum dots
Zhi-Hao Bian(边志浩), Hao Qin(秦豪), Xiang Zhan(詹翔), Jian Li(李剑), Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(2): 020307.
[14] Localization of quantum walks on finite graphs
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形). Chin. Phys. B, 2016, 25(12): 120303.
[15] Stopping time of a one-dimensional bounded quantum walk
Hao Luo(骆浩), Xiang Zhan(詹翔), Peng Zhang(张芃), Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(11): 110304.
No Suggested Reading articles found!