Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030305    DOI: 10.1088/1674-1056/abd74d
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Quantum walk under coherence non-generating channels

Zishi Chen(陈子石) and Xueyuan Hu(胡雪元)†
1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China
Abstract  We investigate the probability distribution of the quantum walk under coherence non-generating channels. We define a model called generalized classical walk with memory. Under certain conditions, generalized classical random walk with memory can degrade into classical random walk and classical random walk with memory. Based on its various spreading speed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring the quantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walks with memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walk and classical random walk with memory by coherence non-generating channels. Also, we find that for another class of coherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of the coin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore the relationship between coherence and quantum walk.
Keywords:  coherence      quantum walk      probability distribution  
Received:  13 October 2020      Revised:  19 November 2020      Accepted manuscript online:  30 December 2020
PACS:  03.67.-a (Quantum information)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774205) and the Young Scholars Program of Shandong University.
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Zishi Chen(陈子石) and Xueyuan Hu(胡雪元) Quantum walk under coherence non-generating channels 2021 Chin. Phys. B 30 030305

1 Hughes B D 1997 J. Stat. Phys. 87 961
2 Bulkley G 2003 J. Stat. Phys. 113 F668
3 Bovet P and Benhamou S J. Theor. Biol. 131 419
4 Gordon A H J. Clim. 4 589
5 Neigel J E and Avise J C Genetics 135 1209
6 Luo L and Yi M Chin. Phys. B 29 50503 (in Chinese)
7 Sun W G, Zhang J Y and Chen G R Chin. Phys. B 22 108904 (in Chinese)
8 Wang Y Q and Yang X Y Chin. Phys. B 22 10509 (in Chinese)
9 Li K P Chin. Phys. B 19 30519 (in Chinese)
10 Wang K, Zhou S Y, Zhang Y F, Pei W J and Liu Q Acta Phys. Sin. 60 118903 (in Chinese)
11 Jing X L, Xiang L, Hu M B and Shi Q 2014 Chin. Phys. Lett. 31 080504 (in Chinese)
12 Helfand E 1975 J. Chem. Phys. 62 999
14 Haus J W and Kehr K W 1978 Lecture Notes in Physics 84 346
15 Haus J W and Kehr K W Phys. Rep. 150 263
16 Rudnicki R and Wolf M 1999 J. Math. Phys. 40 3072
17 Davis B 1990 Probab. Theory Relat. Fields 84 203
18 Wu J F, Xu P and Zhu X M Phys. Lett. A 383 2389
19 Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
20 Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
21 Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R and Greiner M Science 347 1229
22 Chakraborty S, Novo L, Di Giorgio S and Omar Y 2017 Phys. Rev. Lett. 119 220503
23 Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
24 Lu L H and Li Y Q 2019 Chin. Phys. Lett. 36 080305 (in Chinese)
25 Gan S, He X D, Liu B and Feng C D 2015 Chin. Phys. Lett. 32 080305 (in Chinese)
26 Li M, ZHANG Y S and Guo G C 2013 Chin. Phys. Lett. 30 020304 (in Chinese)
27 Feng Y Y, Shi R H, Shi J J and Guo Y Acta Phys. Sin. 68 120302 (in Chinese)
28 Liu Y M, Chen H W, Liu Z H, Xue X L and Zhu W N Acta Phys. Sin. 64 010301 (in Chinese)
29 Meng Y, Mei F, Chen G and Jia S T Chin. Phys. B 29 70501 (in Chinese)
30 Xue X L, Liu Z A and Chen H W Chin. Phys. B 26 10301 (in Chinese)
31 Mc G M Quantum Inf. Comput. 10 509
32 Rohde P P, Brennen G K and Gilchrist A 2013 Phys. Rev. A 87 052302
33 Li D, Mc G M, Gao F, Xu J and Wen Q Y 2016 Phys. Rev. A 93 042323
34 Kendon V and Tregenna B 2003 Phys. Rev. A 67 042315
35 Kendon V 2007 Mathematical. Structures in Comp. Sci. 17 1169
36 Chen J F and Ma Y H and Sun C P 2020 Front. Phys. 15 21602
37 Hu X Y 2016 Phys. Rev. A 94 012326
38 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
39 Ryszard H, Pawe\l H, Micha\l H,Karol H 2009 Rev. Mod. Phys. 81 865
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[6] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[7] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[8] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[9] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[10] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[11] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[12] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[13] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[14] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
[15] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
No Suggested Reading articles found!