Abstract We experimentally investigate the impact of static disorder and dynamic disorder on the non-unitary dynamics of parity-time (PT)-symmetric quantum walks. Via temporally alternating photon losses in an interferometric network, we realize the passive PT-symmetric quantum dynamics for single photons. Controllable coin operations allow us to simulate different environmental influences, which result in three different behaviors of quantum walkers: a standard ballistic spread, a diffusive behavior, and a localization, respectively, in a PT-symmetric quantum walk architecture.
Peng Xue(薛鹏) Disorder in parity-time symmetric quantum walks 2022 Chin. Phys. B 31 010311
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [2] Bender C M, Berntson B K, Parker D and Samuel E 2013 Am. J. Phys. 81 173 [3] Rüter C E, Makris K G, El-Ganainy R, Demetrios N, Christodoulides D N, Segev M and Detlef Kip D 2010 Nat. Phys. 6 192 [4] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 [5] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101 [6] Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787 [7] Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K and Rotter S 2014 Nat. Commun. 5 4034 [8] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 [9] Guo A, Salamo G J, Duchesne D, et al. 2009 Phys. Rev. Lett. 103 093902 [10] Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13 1117 [11] Li J, Harter A K, Liu J, Melo L de, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855 [12] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [13] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 [14] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 [15] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 [16] Xiao L, Wang K K, Zhan X, Bian Z H, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401 [17] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Yi W and Xue P 2019 Phys. Rev. Lett. 122 020501 [18] Li T Y, Zhang Y S and Yi W 2021 Chin. Phys. Lett. 38 030301 [19] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 [20] Xiao L, Deng T S, Wang K K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402 [21] Wang K K, Xiao L, Budich J C, Yi W and Xue P 2021 Phys. Rev. Lett. 127 026404 [22] Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G and Chen Z 2021 Science 3 72 [23] Anderson P W 1958 Phys. Rev. 109 1492 [24] Wiersma D S, Bartolini P, Lagendijk A and Righini R 1997 Nature 390 671 [25] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906 [26] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52 [27] Schreiber A, Cassemiro K N, Potocěk V, Gábris A, Jex I and Silberhorn C 2011 Phys. Rev. Lett. 106 180403 [28] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, De Nicola F, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322 [29] Xue P, Qin H and Tang B 2014 Scientific Reports 4 04825 [30] Xue P, Zhang R, Bian Z, Zhan X, Qin H and Sanders B C 2015 Phys. Rev. A 92 042316 [31] Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895 [32] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891 [33] Xue P and Xiao Y 2006 Phys. Rev. Lett. 97 140501 [34] Xue P, Li C F and Guo G C 2001 Phys. Rev. A 64 032305 [35] Xue P, Li C F and Guo G C 2002 Phys. Rev. A 65 022317 [36] Bian Z H, Li J, Zhan X, Zhang R, Sanders B C and Xue P 2015 Phys. Rev. Lett. 114 203602 [37] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307 [38] Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009 [39] Xue P, Sanders B C, Blais A and Lalumiere K 2008 Phys. Rev. A 78 042334 [40] Wang K K, Qiu X, Xiao L, Zhan X, Sanders B C, Yi W and Xue P 2019 Nat. Commun. 10 2293 [41] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602 [42] Qin H and Xue P 2013 Chin. Phys. B 23 010301 [43] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312 [44] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307 [45] Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502 [46] Qin H and Xue P 2016 Chin. Phys. B 25 010501 [47] Lin Q, Qin H, Wang K K, Xiao L and Xue P 2020 Chin. Phys. B 29 110303 [48] Obuse H, Asbóth J K, Nishimura Y and Kawakami N 2015 Phys. Rev. B 92 045424
[1]
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.