Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100301    DOI: 10.1088/1674-1056/abf554
GENERAL   Next  

High winding number of topological phase in non-unitary periodic quantum walk

Yali Jia(贾雅利) and Zhi-Jian Li(李志坚)
Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Abstract  Topological phases and their associated multiple edge states are studied by constructing a one-dimensional non-unitary multi-period quantum walk with parity-time symmetry. It is shown that large topological numbers can be obtained when choosing an appropriate time frame. The maximum value of the winding number can reach the number of periods in the one-step evolution operator. The validity of the bulk-edge correspondence is confirmed, while for an odd-period quantum walk and an even-period quantum walk, they have different configurations of the 0-energy edge state and π-energy edge state. On the boundary, two kinds of edge states always coexist in equal amount for the odd-period quantum walk, however three cases including equal amount, unequal amount or even only one type may occur for the even-period quantum walk.
Keywords:  periodic quantum walk      high winding number      edge states  
Received:  07 January 2021      Revised:  10 March 2021      Accepted manuscript online:  07 April 2021
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  05.40.Fb (Random walks and Levy flights)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004231).
Corresponding Authors:  Zhi-Jian Li     E-mail:  zjli@sxu.edu.cn

Cite this article: 

Yali Jia(贾雅利) and Zhi-Jian Li(李志坚) High winding number of topological phase in non-unitary periodic quantum walk 2021 Chin. Phys. B 30 100301

[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[2] Kempe J 2003 Contemp. Phys. 44 307
[3] Venegas-Andraca E S 2012 Quantum Inf. Proc. 11 1015
[4] Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
[5] Shenvi N, Kempe J and Birgitta Whaley K 2003 Phys. Rev. A 67 052307
[6] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[7] Kurzyński P and Wójcik A 2011 Phys. Rev. A 83 062315
[8] Kitagawa T et al. 2010 Phys. Rev. A 82 033429
[9] Groh T, Brakhane S, Alt W et al. 2016 Phys. Rev. A 94 013620
[10] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501
[11] Rakovszky T and Asboth J K 2015 Phys. Rev. A 92 052311
[12] Panahiyan S and Fritzsche S 2019 Phys. Rev. A 100 062115
[13] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[14] Ryan C A, Laforest M, Boileau J C and Laflamme R, E 2005 Phys. Rev. A 72 062317
[15] Lu D W et al. 2016 Phys. Rev. A 93 042302
[16] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
[17] Robens C, Alt W, Meschede D, Emary C and Alberti A 2015 Phys. Rev. X 5 011003
[18] Peruzzo A et al. 2010 Science 329 1500
[19] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 13 110307
[20] Schreiber A et al. 2011 Phys. Rev. Lett. 106 180403
[21] Jeong Y C, Franco C D, Lim H T, Kim M S and Kim Y H 2013 Nat. Commun. 4 2471
[22] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
[23] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501
[24] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[25] Zhang R, Liu Y F and Chen T 2020 Phys. Rev. A 102 022218
[26] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, K, Makris K G, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433
[27] Poli C, Bellec M, Kuhl U, Mortessagne F and Schomerus H 2015 Nat. Commun. 6 6710
[28] Asboth J K 2013 Phys. Rev. B 88 121406
[29] Tarasinski B, Asboth J K and Dahlhaus J P 2014 Phys. Rev. A 89 042327
[30] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[31] Kawabata K, Shiozaki K and Ueda M and Sato M 2018 Phys. Rev. X 9 041015
[32] Xiao L, Qiu X, Wang K K, Bian Z, Zhan X, Obuse H, Sanders B C, Yi W and Xue P 2018 Phys. Rev. A 98 063847
[33] El-Ganainy R, Markris K G, Khajavikhan M et al. 2018 Nat. Phys. 10 1038
[34] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[1] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[2] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[3] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[4] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[5] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[6] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[7] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[8] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[9] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[10] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[11] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[12] Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111)
Gao Chun-Lei (高春雷), Qian Dong (钱冬), Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋), Liu Feng (刘锋). Chin. Phys. B, 2013, 22(6): 067304.
No Suggested Reading articles found!