Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010302    DOI: 10.1088/1674-1056/24/1/010302
GENERAL Prev   Next  

Efficient error estimation in quantum key distribution

Li Mo (李默)a b, Patcharapong Treeviriyanupabc, Zhang Chun-Mei (张春梅)a b, Yin Zhen-Qiang (银振强)a b, Chen Wei (陈巍)a b, Han Zheng-Fu (韩正甫)a b
a Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
c Department of Computer Science, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok, Thailand
Abstract  

In a quantum key distribution (QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method (PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.

Keywords:  error estimation      parity comparison      quantum key distribution  
Received:  24 February 2014      Revised:  25 July 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2011CB921200) and the National Natural Science Foundation of China (Grant Nos. 61101137, 61201239, and 61205118).

Corresponding Authors:  Yin Zhen-Qiang, Chen Wei     E-mail:  yinzheqi@mail.ustc.edu.cn;kooky@mail.ustc.edu.cn

Cite this article: 

Li Mo (李默), Patcharapong Treeviriyanupab, Zhang Chun-Mei (张春梅), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), Han Zheng-Fu (韩正甫) Efficient error estimation in quantum key distribution 2015 Chin. Phys. B 24 010302

[1] Bennet C H and Brassard G 1984 Processings of IEEE International Conference on Computers, Systems and Singnal Processing, p. 175
[2] Peev M, Pacher C and Alléaume R 2009 New J. Phys. 11 075001
[3] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 2991
[4] Fröhlich B, Dynes J F, Lucamarini M, Sharpe A W, Yuan Z L and Shields A J 2013 Nature 501 69
[5] Brassard G and Salvail L 1994 Advances in Cryptology-EUROCRYPT'93 (Berlin, Heidelberg: Springer-Verlag) p. 410
[6] Pearson D 2004 AIP Conference Proceedings 734 299
[7] Jesus M M, Elkouss D and Martin V 2013 Sci. Rep. 3 1576
[8] Cui K, Wang J, Zhang H F, Luo C L, Jin G and Chen T Y 2013 IEEE T. Inf. Foren. Sec. 8 184
[9] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[10] Poppe A, Fedrizzi A, Ursin R, Böhm H R, Lorünser T, Maurhardt O, Peev M, Suda M, Kurtsiefer C, Weinfurter H, Jennewein T and Zeilinger A 2004 Opt. Express 12 3865
[11] Scarani V, Bechmann-Pasquinucc H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[12] Dixon A R, Yuan Z L, Dynes J F, Sharpe A W and Shields A J 2008 Opt. Express 16 18790
[13] Gallager R 1963 Low-Density Parity-Check Codes (Ph.D. Thesis) (Massachusetts Institute of Technology)
[14] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[15] Mo X F, Lucio-Martinez I, Chan P, Healey C, Hosier S and Tittel W 2011 Opt. Express 19 17729
[16] Tanaka A, Fujiwara M, Yoshino K, Takahashi S, Nambu Y, Tomita A, Miki S, Yamashita T, Wang Z, Sasaki M and Tajima A 2012 IEEE J. Quantum Electron. 48 542
[17] Gottesman D, Lo H K, Lütkenhaus and Preshill J 2004 Quant. Inf. Comput. 5 325
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!