|
|
Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire |
Li Qiang (李强)a, Wei Hong (魏红)a, Xu Hong-Xing (徐红星)a b |
a Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
b Center for Nanoscience and Nanotechnology, and School of Physics and Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract Using propagating surface plasmons (SPs) on a silver nanowire (NW), we demonstrate that a focused laser light at the end of the silver NW can excite a single quantum dot (QD) microns away from the excitation spot. The QD-NW interaction allows the excited QD convert part of its energy into propagating SPs, which then can be detected at remote sites. Simultaneous multi-QD remote excitation and remote detection can also be realized. Furthermore, the tight confinement of the propagating SPs around the NW surface enables the selective excitation of QDs very close in space, which cannot be realized under the conventional excitation condition. This remote excitation and remote detection approach may find applications in optical imaging and the sensing of chemical and biological systems.
|
Received: 25 April 2014
Revised: 20 May 2014
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Hc
|
(Quantum dots)
|
|
78.67.Uh
|
(Nanowires)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374012, 11134013, 11227407, and 61210017), the Ministry of Science and Technology of China (Grant No. 2012YQ12006005), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-EW-W04). |
Corresponding Authors:
Wei Hong
E-mail: weihong@iphy.ac.cn
|
Cite this article:
Li Qiang (李强), Wei Hong (魏红), Xu Hong-Xing (徐红星) Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire 2014 Chin. Phys. B 23 097302
|
[1] |
Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
|
[2] |
Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos A P 1998 Science 281 2013
|
[3] |
Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717
|
[4] |
Courty S, Luccardini C, Bellaiche Y, Cappello G and Dahan M 2006 Nano Lett. 6 1491
|
[5] |
Brokmann X, Messin G, Desbiolles P, Giacobino E, Dahan M and Hermier J P 2004 New J. Phys. 6 099
|
[6] |
Fang Y R, Wei H, Hao F, Nordlander P and Xu H X 2009 Nano Lett. 9 2049
|
[7] |
Xu H X, Bjerneld E J, Käll M and Börjesson L 1999 Phys. Rev. Lett. 83 4357
|
[8] |
Xu H X, Aizpurua J, Käll M and Apell P 2000 Phys. Rev. E 62 4318
|
[9] |
Wei H, Reyes. Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649
|
[10] |
Chen L, Wei H, Chen K Q and Xu H X 2014 Chin. Phys. B 23 027303
|
[11] |
Xu H X and Kall M 2002 Sensor Actuat. B Chem. 87 244
|
[12] |
Ozbay E 2006 Science 311 189
|
[13] |
Wei H and Xu H X 2012 Nanophotonics 1 155
|
[14] |
Guo X, Ma Y G, Wang Y P and Tong L M 2013 Laser Photonics Rev. 7 855
|
[15] |
Pan D, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
|
[16] |
Sanders A W, Routenberg D A, Wiley B J, Xia Y N, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
|
[17] |
Wei H, Ratchford D, Li X E, Xu H X and Shih C K 2009 Nano Lett. 9 4168
|
[18] |
Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
|
[19] |
Zhu Y, Wei H, Yang P F and Xu H X 2012 Chin. Phys. Lett. 29 077302
|
[20] |
Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
|
[21] |
Wei H, Zhang S P, Tian X R and Xu H X 2013 Proc. Natl. Acad. Sci. USA 110 4494
|
[22] |
Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R and Wang M 2013 Sci. Rep. 3 3095
|
[23] |
Wei H, Li Z P, Tian X P, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2011 Nano Lett. 11 471
|
[24] |
Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nat. Commun. 2 387
|
[25] |
Li Z P, Zhang S P, Halas N J, Nordlander P and Xu H X 2011 Small 7 593
|
[26] |
Liu S D, Cheng M T, Yang Z J and Wang Q Q 2008 Opt. Lett. 33 851
|
[27] |
Fedutik Y, Temnov V, Schöps O, Woggon U and Artemyev M 2007 Phys. Rev. Lett. 99 136802
|
[28] |
Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
|
[29] |
Sun Y G and Xia Y N 2002 Adv. Mater. 14 833
|
[30] |
Neuhauser R G, Shimizu K T, Woo W K, Empedocles S A and Bawendi M G 2000 Phys. Rev. Lett. 85 3301
|
[31] |
Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
|
[32] |
Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831
|
[33] |
Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P and Dubertret B 2008 Nat. Mater. 7 659
|
[34] |
Zhang A D, Dong C Q, Liu H and Ren J C 2013 J. Phys. Chem. C 117 24592
|
[35] |
Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
|
[36] |
Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|