Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097302    DOI: 10.1088/1674-1056/23/9/097302
RAPID COMMUNICATION Prev   Next  

Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire

Li Qiang (李强)a, Wei Hong (魏红)a, Xu Hong-Xing (徐红星)a b
a Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
b Center for Nanoscience and Nanotechnology, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  Using propagating surface plasmons (SPs) on a silver nanowire (NW), we demonstrate that a focused laser light at the end of the silver NW can excite a single quantum dot (QD) microns away from the excitation spot. The QD-NW interaction allows the excited QD convert part of its energy into propagating SPs, which then can be detected at remote sites. Simultaneous multi-QD remote excitation and remote detection can also be realized. Furthermore, the tight confinement of the propagating SPs around the NW surface enables the selective excitation of QDs very close in space, which cannot be realized under the conventional excitation condition. This remote excitation and remote detection approach may find applications in optical imaging and the sensing of chemical and biological systems.
Keywords:  surface plasmons      silver nanowire      quantum dot      fluorescence  
Received:  25 April 2014      Revised:  20 May 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Hc (Quantum dots)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374012, 11134013, 11227407, and 61210017), the Ministry of Science and Technology of China (Grant No. 2012YQ12006005), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-EW-W04).
Corresponding Authors:  Wei Hong     E-mail:  weihong@iphy.ac.cn

Cite this article: 

Li Qiang (李强), Wei Hong (魏红), Xu Hong-Xing (徐红星) Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire 2014 Chin. Phys. B 23 097302

[1] Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
[2] Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos A P 1998 Science 281 2013
[3] Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717
[4] Courty S, Luccardini C, Bellaiche Y, Cappello G and Dahan M 2006 Nano Lett. 6 1491
[5] Brokmann X, Messin G, Desbiolles P, Giacobino E, Dahan M and Hermier J P 2004 New J. Phys. 6 099
[6] Fang Y R, Wei H, Hao F, Nordlander P and Xu H X 2009 Nano Lett. 9 2049
[7] Xu H X, Bjerneld E J, Käll M and Börjesson L 1999 Phys. Rev. Lett. 83 4357
[8] Xu H X, Aizpurua J, Käll M and Apell P 2000 Phys. Rev. E 62 4318
[9] Wei H, Reyes. Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649
[10] Chen L, Wei H, Chen K Q and Xu H X 2014 Chin. Phys. B 23 027303
[11] Xu H X and Kall M 2002 Sensor Actuat. B Chem. 87 244
[12] Ozbay E 2006 Science 311 189
[13] Wei H and Xu H X 2012 Nanophotonics 1 155
[14] Guo X, Ma Y G, Wang Y P and Tong L M 2013 Laser Photonics Rev. 7 855
[15] Pan D, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
[16] Sanders A W, Routenberg D A, Wiley B J, Xia Y N, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
[17] Wei H, Ratchford D, Li X E, Xu H X and Shih C K 2009 Nano Lett. 9 4168
[18] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[19] Zhu Y, Wei H, Yang P F and Xu H X 2012 Chin. Phys. Lett. 29 077302
[20] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[21] Wei H, Zhang S P, Tian X R and Xu H X 2013 Proc. Natl. Acad. Sci. USA 110 4494
[22] Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R and Wang M 2013 Sci. Rep. 3 3095
[23] Wei H, Li Z P, Tian X P, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2011 Nano Lett. 11 471
[24] Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nat. Commun. 2 387
[25] Li Z P, Zhang S P, Halas N J, Nordlander P and Xu H X 2011 Small 7 593
[26] Liu S D, Cheng M T, Yang Z J and Wang Q Q 2008 Opt. Lett. 33 851
[27] Fedutik Y, Temnov V, Schöps O, Woggon U and Artemyev M 2007 Phys. Rev. Lett. 99 136802
[28] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[29] Sun Y G and Xia Y N 2002 Adv. Mater. 14 833
[30] Neuhauser R G, Shimizu K T, Woo W K, Empedocles S A and Bawendi M G 2000 Phys. Rev. Lett. 85 3301
[31] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
[32] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831
[33] Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P and Dubertret B 2008 Nat. Mater. 7 659
[34] Zhang A D, Dong C Q, Liu H and Ren J C 2013 J. Phys. Chem. C 117 24592
[35] Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
[36] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
No Suggested Reading articles found!