Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097303    DOI: 10.1088/1674-1056/23/9/097303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy

Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  The localized surface plasmon resonance properties of Al and Alcore/Al2O3shell nanosphere dimers with Al and Al core nanosphere radii of 20 nm and Al2O3 shell of 2 nm in the deep-ultraviolet region have been studied using the finite difference time domain method. The extinction spectra and the electric field distribution profiles of the two dimers for various gap distances between two individual nanospheres are compared with those of the corresponding monomers to reveal the extent of plasmon coupling. It is found that with the interparticle distance decreasing, a strong plasmon coupling between two Al or Alcore/Al2O3shell nanospheres is observed accompanied by a significant red shift in the extinction spectra at the parallel polarization direction of the incident light related to the dimer axis, while for the case of the perpendicular polarization direction, a weak plasmon coupling arises characterized by a slight blue shift in the extinction spectra. The electric field distribution profiles show that benefiting from the dielectric Al2O3 shell, the gap distance of Alcore/Al2O3shell nanosphere dimers can be tailored to < 1 nm scale and results in a very high electric field enhancement. The estimated surface-enhanced Raman scattering enhancement factors suggests that the Alcore/Al2O3shell nanosphere dimers with the gap of < 1 nm gave rise to an enhancement as high as 8.1×107 for interparticle gap=0.5 nm. Our studies reveal that the Alcore/Al2O3shell nanosphere dimers may be promising substrates for surface-enhanced spectroscopy in the deep-ultraviolet region.
Keywords:  localized surface plasmon resonance      deep ultraviolet      aluminum nanosphere dimers      enhanced spectroscopy  
Received:  28 February 2014      Revised:  24 March 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104079 and 61378033), the National Key Scientific Instrument Project of China (Grant No. 2012YQ150092), the Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20110076120019), and the State Key Laboratory of Luminescent Materials and Devices at South China University of Technology.
Corresponding Authors:  Wu Bo-Tao     E-mail:  btwu@phy.ecnu.edu.cn

Cite this article: 

Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平) Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy 2014 Chin. Phys. B 23 097303

[1] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[2] Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459
[3] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[4] Kinkhabwala A, Yu Z, Fan S H, Avlasevich Y, Muellen K and Moerner W E 2009 Nat. Photonics 3 654
[5] Wu E, Chi Y Z, Wu B T, Xia K W, Yokota Y, Ueno K, Misawa H and Zeng H P 2011 J. Lumin. 131 1971
[6] Yokota Y, Ueno K and Misawa H 2011 Chem. Commun. 47 3505
[7] Song M, Chen G X, Liu Y, Wu E, Wu B T and Zeng H P 2012 Opt. Express 20 22290
[8] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Y 2010 Nature 464 392
[9] Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K and Misawa H 2008 J. Am. Chem. Soc. 130 6928
[10] Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P and Misawa H 2012 J. Phys. Chem. Lett. 3 1443
[11] Zhao H J 2012 Chin. Phys. B 21 087104
[12] Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P and Song G F 2013 Chin. Phys. B 22 104213
[13] Wang X M, Song M, Liang Y, Wang Z Y, Kong W B, Huang J H, Wu E, Wu B T, Wu G and Zeng H P 2013 Opt. Express 21 6442
[14] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[15] Chi Y Z, Chen G X, Jelezko F, Wu E and Zeng H P 2011 IEEE Photon. Technol. Lett. 23 374
[16] Chen G X, Liu Y, Song M, Wu B T, Wu E and Zeng H P 2013 IEEE J. Sel. Top. Quant. 19 4602404
[17] Efremov E V, Ariese F and Gooijer C 2008 Anal. Chim. Acta 606 119
[18] Asher S A 1993 Anal. Chem. 65 59A
[19] Asher S A and Johnson C R 1984 Science 225 311
[20] McMahon J M, Schatz G C and Gray S K 2013 Phys. Chem. Chem. Phys. 15 5415
[21] Ekinci Y, Solak H H and Löffler J F 2008 J. Appl. Phys. 104 083107
[22] Chowdhury M H, Ray K, Gray S K, Pond J and Lakowicz J R 2009 Anal. Chem. 81 1397
[23] Hu J L, Chen L, Lian Z C, Cao M, Li H J, Sun W B and Tong N L 2012 J. Phys. Chem. C 116 15584
[24] Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
[25] Jha S K, Ahmed Z, Agio M, Ekinci Y and Löffler J F 2012 J. Am. Chem. Soc. 134 1966
[26] Chan G H, Zhao J, Schatz G C and Duyne R P V 2008 J. Phys. Chem. C 112 13958
[27] Taguchi A, Saito Y, Watanabe K, Song Y J and Kawata S 2012 Appl. Phys. Lett. 101 081110
[28] Li L, Lim S F, Puretzky A A, Riehn R and Hallen H D 2012 Appl. Phys. Lett. 101 113116
[29] Castro-Lopez M, Brinks D, Sapienza R and Hulst N F 2011 Nano Lett. 11 4674
[30] Knight M W, Liu L F, Wang Y M, Brown L, Mukherjee S, King M S, Everitt H O, Nordlander P and Halas N J 2012 Nano Lett. 12 6000
[31] Schwab P M, Moosmann C, Wissert M D, Schmidt E W, Ilin K S, Siegel M, Lemmer U and Eisler H 2013 Nano Lett. 13 1535
[32] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[33] Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Norlander P and Halas N J 2005 Nano Lett. 5 1569
[34] Thomas R and Swathi R S 2012 J. Phys. Chem. C 116 21982
[35] Ou F S, Hu M, Naumov I, Kim A, Wu W, Bratkovsky A M, Li X M, Williams R S and Li Z Y 2011 Nano Lett. 11 2538
[36] Palik E D 1984 Handbook of Optical Constants of Solids (Academic Press: New York)
[37] Jain P K, Huang W Y and EI-Sayed M A 2007 Nano Lett. 7 2080
[38] Tanaka Y, Ishiguro H, Fujiwara H, Yokota Y, Ueno K, Misawa H and Sasaki K 2011 Opt. Express 19 7726
[39] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y and Misawa H 2013 Light: Sci. Appl. 2 e118
[40] Atay T, Song J H and Nurmikko A V 2004 Nano Lett. 4 1627
[41] Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
[42] Almedia V R, Xu Q F, Barrios C A and Lipson M 2004 Opt. Lett. 29 1209
[43] Kern J, Großmann S, Tarakina N V, Häckel T, Emmerling M, Kamp M, Huang J S, Biagioni P, Prangsma J C and Hecht B 2012 Nano Lett. 12 5504
[44] Lim D K, Jeon K S, Kim H M, Nam J M and Suh Y D 2010 Nat. Mater. 9 60
[45] Lee J H, Nam J M, Jeon K S, Lim D K, Kim H M, Kwon S, Lee H and Suh Y D 2012 ACS Nano 6 9574
[46] Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887
[47] Scholl J A, Garcia-Etxarri A, Koh A L and Dionne J A 2013 Nano Lett. 13 564
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[4] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[5] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[8] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[9] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[10] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[11] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[12] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[13] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[14] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[15] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
No Suggested Reading articles found!