Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087803    DOI: 10.1088/1674-1056/23/8/087803
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Raman scattering in In/InOx core–shell structured nanoparticles

Wang Meng (王萌)a b, Tian Ye (田野)b c, Zhang Jian-Ming (张建明)b c, Guo Chuan-Fei (郭传飞)d, Zhang Xin-Zheng (张心正)a, Liu Qian (刘前)a b
a The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, China;
b National Center for Nanoscience and Technology, Beijing 100190, China;
c University of the Chinese Academy of Sciences, Beijing 100190, China;
d Department of Physics and TcSUH, University of Houston, Houston, TX 77204, USA
Abstract  The properties of Raman phonons are very important due to the fact that they can availably reflect some important physical information. An abnormal Raman peak is observed at about 558 cm-1 in In film composed of In/InOx core-shell structured nanoparticles, and the phonon mode stays very stable when the temperature changes. Our results indicate that this Raman scattering is attributed to the existence of incomplete indium oxide in the oxide shell.
Keywords:  Raman scattering      core-shell structure      indium      nanoparticles  
Received:  04 September 2013      Revised:  20 March 2014      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374069 and 61006078), the National Basic Research Program of China (Grant Nos. 2010CB934102 and 2010CB934101), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09020300).
Corresponding Authors:  Zhang Xin-Zheng, Liu Qian     E-mail:  zxz@nankai.edu.cn;liuq@nanoctr.cn

Cite this article: 

Wang Meng (王萌), Tian Ye (田野), Zhang Jian-Ming (张建明), Guo Chuan-Fei (郭传飞), Zhang Xin-Zheng (张心正), Liu Qian (刘前) Raman scattering in In/InOx core–shell structured nanoparticles 2014 Chin. Phys. B 23 087803

[1] Endo M, Kim C, Karaki T, Tamaki T, Nishimura Y, Matthews M, Brown S and Dresselhaus M 1998 Phys. Rev. B 58 8991
[2] Xu H, Liu Y, Xu C, Liu Y, Shao C and Mu R 2006 J. Chem. Phys. 124 074707
[3] Trodahl H, Budde F, Ruck B, Granville S, Koo A and Bittar A 2005 J. Appl. Phys. 97 084309
[4] Hirakawa T and Kamat P V 2005 J. Am. Chem. Soc. 127 3928
[5] Saunders A E, Koo B, Wang X, Shih C K and Korgel B A 2008 Chem. Phys. Chem. 9 1158
[6] Baranov A, Rakovich Y P, Donegan J, Perova T, Moore R, Talapin D, Rogach A, Masumoto Y and Nabiev I 2003 Phys. Rev. B 68 165306
[7] Zeng H, Cai W, Cao B, Hu J, Li Y and Liu P 2006 Appl. Phys. Lett. 88 181905
[8] Montazeri M, Fickenscher M, Smith L M, Jackson H E, Yarrison-Rice J, Kang J H, Gao Q, Tan H H, Jagadish C and Guo Y 2010 Nano Lett. 10 880
[9] Hilse M, Takagaki Y, Ramsteiner M, Herfort J, Breuer S, Geelhaar L and Riechert H 2011 J. Cryst. Growth 323 307
[10] Hashemi P, Poweleit C, Canonico M and Hoyt J 2010 ECS Trans. 33 687
[11] Chen J, Conache G, Pistol M E, Gray S M, Borgstroöm M T, Xu H, Xu H, Samuelson L and Håkanson U 2010 Nano Lett. 10 1280
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[13] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[14] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!