Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087102    DOI: 10.1088/1674-1056/23/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theory of phonon-modulated electron spin relaxation time based on the projection–reduction method

Nam Lyong Kanga, Sang Don Choib
a Department of Applied Nanoscience, Pusan National University, Miryang 627-706, Republic of Korea;
b Department of Physics, Kyungpook National University, Daegu 702-701, Republic of Korea
Abstract  This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1T-1.07 at low temperatures and T1T-3.3 at high temperatures for acoustic deformation constant Pad=1.4× 107 eV and optical deformation constant Pod=4.0×1017 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 B-2.7 at 100 K and T1B-2.3 at 150 K, which nearly agree with the result of Yafet, T1B-3.0B-2.5.
Keywords:  electron spin resonance      spin-orbit coupling      projection-reduction method      phonon scattering  
Received:  10 January 2014      Revised:  20 February 2014      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Rb (Spin relaxation and scattering)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Corresponding Authors:  Nam Lyong Kang     E-mail:  nlkang@pusan.ac.kr

Cite this article: 

Nam Lyong Kang, Sang Don Choi Theory of phonon-modulated electron spin relaxation time based on the projection–reduction method 2014 Chin. Phys. B 23 087102

[1] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[2] Kane B E 1998 Nature 393 133
[3] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[6] Yuan X B, Ren J F and Hu G C 2012 Chin. Phys. Lett. 29 067501
[7] Hao Y F 2013 Chin. Phys. B 22 017102
[8] Li S F, He P, Cheng C Y, Zhou S M and Lai T S 2014 Chin. Phys. Lett. 31 017502
[9] Tyryshkin A M, Lyon S A, Astashkin A V and Raitsimring A M 2003 Phys. Rev. B 68 193207
[10] Žutić I, Fabian J and Erwin S C 2006 Phys. Rev. Lett. 97 026602
[11] Žutić I and Fabian J 2007 Nature 447 268
[12] Appelbaum I, Huang B and Monsma D J 2007 Nature 447 295
[13] Dash S P, Sharma S, Patel R S, de Jong M P and Jansen R 2007 Nature 462 491
[14] Lepine D J 1970 Phys. Rev. B 2 2429
[15] Matsunami J, Ooya M and Okamoto T 2006 Phys. Rev. Lett. 97 066602
[16] Fabian J, Matos-Abiague A, Ertler C, Stano P and Žutić I 2007 Acta Phys. Slovaca 57 565
[17] Schlegel C, van Slageren J, Timco G, Winpenny R E P and Dressel M 2011 Phys. Rev. B 83 134407
[18] Fábián G, Dóra B, Antal Á, Szolnoki L, Korecz L, Rockenbauer A, Nemes N M, Forró L and Simon F 2012 Phys. Rev. B 85 235405
[19] Elliott R J 1954 Phys. Rev. 96 266
[20] Yafet Y 1963 Solid State Physics, Vol. 14, ed. Seitz F and Turnbull D (New York : Academic Press) Chap. 7
[21] Restrepo O D, Varga K and Pantelides S T 2009 Appl. Phys. Lett. 94 212103
[22] Restrepo O D and Windl W 2012 Phys. Rev. Lett. 109 166604
[23] Cheng J L, Wu M W and Fabian J 2010 Phys. Rev. Lett. 104 016601
[24] Li P and Dery H 2011 Phys. Rev. Lett. 107 107203
[25] Tang J M, Collins B T and Flatte M E 2012 Phys. Rev. B 85 045202
[26] Kang N L and Choi S D 2008 J. Math. Phys. 49 073501
[27] Kang N L and Choi S D 2010 J. Phys. A: Math. Theor. 43 165203
[28] Kang N L and Choi S D 2012 AIP Advances 2 012162
[29] Huang B, Monsma D J and Appelbaum I 2007 Phys. Rev. Lett. 99 177209
[30] Mahan G D 2000 Many-Particle Physics (New York: Plenum)
[31] Kawabata A 1970 J. Phys. Soc. Jpn. 29 902
[32] Ferry D K 1991 Semiconductors (New York: Macmillan) Chap. 7
[33] Varshni V P 1967 Physica 34 149
[34] Wolfe C M and Stillman G E 1989 Physics Properties of Semiconductors (NJ: Prentice-Hall)
[35] Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wily)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[12] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!