Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087101    DOI: 10.1088/1674-1056/23/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and optical properties of A-doped wurtzite Mg0.25Zn0.75O

Zheng Shu-Wen (郑树文), He Miao (何苗), Li Shu-Ti (李述体), Zhang Yong (章勇)
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  The energy band structures, density of states, and optical properties of A-doped wurtzite Mg0.25Zn0.75O (A=Al, Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:A are larger than those of Mg0.25Zn0.75O because of the Burstein-Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:A are heavier than those of Mg0.25Zn0.75O, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet (UV) and deep UV optoelectronic devices.
Keywords:  first-principles      Mg0.25Zn0.75O      electronic structure      optical bandgap  
Received:  10 March 2014      Revised:  08 May 2014      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.20.Pq (Electronic structure calculations)  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61078046), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province, China (Grant No. 2012A080304016), and the Youth Foundation of South China Normal University, China (Grant No. 2012KJ018).
Corresponding Authors:  Zheng Shu-Wen     E-mail:  LED@scnu.edu.cn

Cite this article: 

Zheng Shu-Wen (郑树文), He Miao (何苗), Li Shu-Ti (李述体), Zhang Yong (章勇) Electronic structures and optical properties of A-doped wurtzite Mg0.25Zn0.75O 2014 Chin. Phys. B 23 087101

[1] Yang Z H, Zheng J H, Zhai H J, Yang L L, Liu L and Gao M 2009 Cryst. Res. Technol. 44 619
[2] Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D and Zhao Y 2012 Appl. Surf. Sci. 258 9005
[3] Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K and Niki S 2004 Appl. Phys. Lett. 85 1374
[4] Robbins J J and Wolden C A 2003 Appl. Phys. Lett. 83 3933
[5] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
[6] Yang C, Li X M, Gao X D, Cao X, Yang R and Li Y Z 2011 Solid State Commun. 151 264
[7] Tian C S, Chen X L, Liu J M, Zhang D K, Wei C C, Zhao Y and Zhang X D 2014 Acta Phys. Sin. 63 036801 (in Chinese)
[8] Liu W S, Chen W K and Hsueh K P 2013 J. Alloys Compd. 552 255
[9] Cohen D J, Ruthe K C and Barnett S A 2004 J. Appl. Phys. 96 459
[10] Segall M D, Lindan P, Probet M J, Pickard C J, Hasnip P J, Clark S J, and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[11] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[13] Zunger A, Wei S H, Ferreira L G and Bemard J E 1990 Phys. Rev. Lett. 65 353
[14] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[15] Wang Z J, Li S C, Wang L T and Liu Z 2009 Chin. Phys. B 18 2992
[16] Yang K S, Dai Y and Huang B B 2008 Chem. Phys. Lett. 456 71
[17] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[18] Saniz R, Xu Y, Matsubara M, Amini M N, Dixit H, Lamoen and Partoens B 2013 J. Phys. Chem Solids 74 45
[19] Dean J A 1992 Lange's Handbook of Chemistry, 14th edn. (New York: McGraw-Hill, Inc.)
[20] Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M and Koinuma H 2002 Appl. Phys. Lett. 81 3798
[21] Huang D, Shao Y Z, Chen D H, Guo J and Li G X 2008 Acta Phys. Sin. 57 1078 (in Chinese)
[22] Hou Q Y, Li J J, Ying Y C, Zhao C W, Zhao E J and Zhang Y 2013 Chin. Phys. B 22 077103
[23] Lu J G, Fujita S and Ye Z Z 2007 J. Appl. Phys. 101 083705
[24] Roth A P, Webb J B and Williams D F 1981 Solid State Commun. 39 1269
[25] Sarkar A, Ghosh S, Chaudhuri S and Pal A K 1991 Thin Solid Films 204 255
[26] Reynolds D C, Look D C and Jogai B 2000 J. Appl. Phys. 88 5760
[27] Walsh A, Juarez L F, Silva S D and Wei S H 2008 Phys. Rev. B 78 075211
[28] Lucarini V, Saarinen J J, Peiponen K E and Vartiainen E M 2005 Kramers-Kronig Relations in Optical Materials Research, Springer Series in Optical Sciences, Vol. 110 (Berline/Heidelberg: Springer Science+Business Media) pp. 27-35, ISBN: 978-3-540-23673-3 (print), 978-3-540-27316-5 (online)
[29] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627
[30] Sernelius B E, Berggren K F, Jin Z C, Hamberg I and Granqvist C G 1988 Phys. Rev. B 37 10244
[31] Burstein E 1954 Phys. Rev. 93 632
[32] Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775
[33] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y and Ohshima T 2006 Appl. Phys. Lett. 89 262107
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!