Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 086802    DOI: 10.1088/1674-1056/23/8/086802
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Adsorptions and diffusions of carbon atoms on the surface and in the subsurface of Co (200):A first-principles density-functional study

Qiao Liang (乔靓)a b c, Wang Shu-Min (王淑敏)a d, Zhang Xiao-Ming (张晓明)a, Hu Xiao-Ying (胡小颖)b, Zeng Yi (曾毅)a, Zheng Wei-Tao (郑伟涛)a
a College of Materials Science and Engineering, Jilin University, Changchun 130012, China;
b College of Science, Changchun University, Changchun 130022, China;
c State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012, China;
d Light Industry College, Liaoning University, Shenyang 110036, China
Abstract  First-principles calculations based on density functional theory are used to investigate the adsorptions and diffusions of carbon atoms on the surface and in the subsurface of Co (200). The preferred site for the carbon atom on the surface is the hollow site, and the preferred site in the subsurface is the octahedral site. There is charge transfer from the surface to the adsorbed carbon atom, and for the most favorable adsorbed structure the charge transfer is largest. Moreover, the energy barriers for the diffusions of carbon atoms on the surface and from the surface into the subsurface and then back to the surface are calculated in detail. The results indicate that the energy barrier for the diffusion of carbon atoms on the surface is comparable to that from the subsurface to the surface. The results imply that both the direct surface nucleation and the surface segregation from Co bulk can be observed in the chemical vapor deposition growth of graphene on Co (200) substrate, which can gain a new insight into the growth mechanism of graphene.
Keywords:  adsorption      diffusion      carbon      Co surface      first-principles calculations  
Received:  04 September 2013      Revised:  13 February 2014      Accepted manuscript online: 
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51002014, 51202017, and 51372095), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120061120039), the Funds from the Science and Technology Department of Jilin Province, China (Grant Nos. 20120745 and 20130101029JC), the Funds from the Department of Education of Jilin Province, China (Grant No. 2013279), and the Youth Science Research Foundation of Liaoning University, China (Grant No. 2013LDQN20).
Corresponding Authors:  Zeng Yi, Zheng Wei-Tao     E-mail:  zengyi@jlu.edu.cn;wtzheng@jlu.edu.cn

Cite this article: 

Qiao Liang (乔靓), Wang Shu-Min (王淑敏), Zhang Xiao-Ming (张晓明), Hu Xiao-Ying (胡小颖), Zeng Yi (曾毅), Zheng Wei-Tao (郑伟涛) Adsorptions and diffusions of carbon atoms on the surface and in the subsurface of Co (200):A first-principles density-functional study 2014 Chin. Phys. B 23 086802

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[5] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[6] Wang W R, Zhou Y X, Li T, Wang Y L and Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese)
[7] Park H J, Meyer J, Roth S and Skakalova V 2010 Carbon 48 1088
[8] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J and Zhang Y G 2010 Nano Lett. 10 1542
[9] Ago H, Ito Y, Mizuta N, Yoshida K, Hu B S, Orofeo C M, Tsuji M, Ikeda K and Mizuno S 2010 ACS Nano 4 7407
[10] Ramon M E, Gupta A, Corbet C, Ferrer D A, Movva H C P, Carpenter G, Colombo L, Bourianoff G, Doczy M, Akinwande D, Tutuc E and Banerjee S K 2011 ACS Nano 5 7198
[11] Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T and Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402
[12] Zhang W H, Wu P, Li Z Y and Yang J L 2011 J. Phys. Chem. C 115 17782
[13] Gao J F, Yip J, Zhao J J, Yakobson B I and Ding F 2011 J. Am. Chem. Soc. 133 5009
[14] Wu P, Jiang H J, Zhang W H, Li Z Y, Hou Z H and Yang J L 2012 J. Am. Chem. Soc. 134 6045
[15] Louchev O A, Laude T, Sato Y and Kanda H 2003 J. Chem. Phys. 118 7622
[16] Zhu Y A, Dai Y C, Chen D and Yuan W K 2007 Surf. Sci. 601 1319
[17] Wei H Y, Xiong X L, Song H T and Luo S Z 2010 Chin. Phys. Lett. 27 097102
[18] Hofmann S, Csanyi G, Ferrari A C, Payne M C and Robertson J 2005 Phys. Rev. Lett. 95 036101
[19] Li B H, Zhang Q J, Chen L, Cui P and Pan X Q 2010 Phys. Chem. Chem. Phys. 12 7848
[20] Zhu Y A, Zhou X G, Chen D and Yuan W K 2007 J. Phys. Chem. C 111 3447
[21] Hu T, Zhang Q M, Wells J C, Gong X G and Zhang Z Y 2010 Phys. Lett. A 374 4563
[22] Yuan J M, Hao W P, Li S H and Mao Y L 2012 Acta Phys. Sin. 61 087301 (in Chinese)
[23] van Helden P and Ciobica I M 2011 ChemPhysChem 12 2925
[24] Jang D E and Carter E A 2005 Phys. Rev. B 71 045402
[25] Cinquini F, Delbecq F and Sautet P 2009 Phys. Chem. Chem. Phys. 11 11546
[26] Liu X W, Huo C F, Li Y W, Wang J G and Jiao H J 2012 Surf. Sci. 606 733
[27] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[28] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Halgren T A and Lipscomb W N 1977 Chem. Phys. Lett. 49 225
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[10] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[13] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[14] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[15] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
No Suggested Reading articles found!