Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 085202    DOI: 10.1088/1674-1056/23/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulation of nanoparticle coagulation in radio-frequency capacitively coupled C2H2 discharges

Liu Xiang-Mei (刘相梅)a, Li Qi-Nan (李奇楠)a, Xu Xiang (徐翔)b
a School of Science, Qiqihar University, Qiqihar 161006, China;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  A self-consistent fluid model is employed to investigate the coagulation stage of nanoparticle formation, growth, charging, and transport in a radio-frequency capacitively coupled parallel-plate acetylene (C2H2) discharge. In our simulation, the distribution of neutral species across the electrode gap is determined by mass continuity, momentum balance, and energy balance equations. Since a thermal gradient in the gas temperature induced by the flow of the neutral gas, a careful study of the thermophoretic force on the spatial distribution of the nanoparticle density profiles is indispensable. In the present paper, we mainly focus on the influences of the gas flow rate, voltage, and gas pressure on the spatial distribution of the nanoparticle density. It appears that the resulting density profile of the 10-nm particles experiences a significant shift towards the upper showerhead electrode once the neutral equations are applied, and a serious shift is observed when increasing the gas flow rate. Thus, the flow of neutral gas can strongly influence the spatial distribution of the particles in the plasma.
Keywords:  nanoparticle dynamics      acetylene discharges      numerical simulation  
Received:  27 November 2013      Revised:  28 January 2014      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.-y (Plasma simulation)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M511603), the National Natural Science Foundation of China (Grant Nos. 11105057 and 10775025), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12LK39).
Corresponding Authors:  Liu Xiang-Mei     E-mail:  lxmjsc98@163.com

Cite this article: 

Liu Xiang-Mei (刘相梅), Li Qi-Nan (李奇楠), Xu Xiang (徐翔) Simulation of nanoparticle coagulation in radio-frequency capacitively coupled C2H2 discharges 2014 Chin. Phys. B 23 085202

[1] Grill A 1993 Wear. 168 143
[2] Daniels B K, Brown D W and Kimock F M 1997 J. Mater. Res. 12 2485
[3] Robertson J 2002 Mater. Sci. Eng. R. 37 129
[4] Obraztsov A N, Volkov A P, Nagovitsyn K S, Nishimura K, Morisawa K, Nakano Y and Hiraki A 2002 J. Phys. D: Appl. Phys. 35 357
[5] Vladimirov S V and Ostrikov K 2004 Phys. Rep. 393 175
[6] Robertson J 1997 Thin Solid Films 296 61
[7] Doyle J R 1997 J. Appl. Phys. 82 4763
[8] Herrebout D, Bogaerts A, Gijbels R, Goedheer W J and Vanhulsel A 2003 IEEE Trans. Plasma Sci. 31 659
[9] Stoykov S, Eggs C and Kortshagen U 2001 J. Phys. D: Appl. Phys. 34 2160
[10] De Bleecker K, Bogaerts A and Goedheer W 2006 Phys. Rev. E 73 026405
[11] Deschenaux Ch, Affolter A, Magni D, Hollenstein Ch and Fayet P 1999 J. Phys. D: Appl. Phys. 32 1876
[12] Mao M, Benedikt J, Consoli A and Bogaerts A 2008 J. Phys. D: Appl. Phys. 41 225201
[13] Warthesen S J and Girshick S L 2007 Plasma Chem. Plasma Process. 27 292
[14] Ravi L and Girshick S L 2009 Phys. Rev. E 79 026408
[15] Liu X M, Song Y H and Wang Y N 2005 Phys. Rev. E 71 066405
[16] De Bleecker K, Bogaerts A and Goedheer W 2005 Phys. Rev. E 71 066405
[17] Khan S A, Ali S and Mendonca J T 2013 J. Plasma Phys. 79 973
[18] Crouseilles N, Hervieux P A and Manfredi G 2008 Phys. Rev. B 78 155412
[19] Khan S A and Saleem H 2009 Plasma Phys. 16 052109
[20] Hagelaar G J M, Fubiani G and Boeuf J-P 2011 Plasma Sources Sci. Technol. 20 015001
[21] Hsu Cheng-Che, Nierode Mark A, Coburn John W and Graves David B 2006 J. Phys. D: Appl. Phys. 39 3272
[22] De Bleecker K, Bogaerts A and Goedheer W 2006 J. New Phys. 8 178
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!