CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Degradation of ferroelectric and weak ferromagnetic properties of BiFeO3 films due to the diffusion of silicon atoms |
Xiao Ren-Zheng (肖仁政)a, Zhang Zao-Di (张早娣)a, Vasiliy O. Pelenovichb, Wang Ze-Song (王泽松)a, Zhang Rui (张瑞)a, Li Hui (李慧)a, Liu Yong (刘雍)a, Huang Zhi-Hong (黄志宏)a, Fu De-Jun (付德君)a |
a Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; b Department of Physics and Technology, Huazhong Normal University, Wuhan 430070, China |
|
|
Abstract Crystalline BiFeO3 (BFO) films each with a crystal structure of a distorted rhombohedral perovskite are characterized by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The diffusion of silicon atoms from the substrate into the BiFeO3 film is detected by Rutherford backscattering spectrometry (RBS). The element analysis is performed by energy dispersive X-ray spectroscopy (EDS). Simulation results of RBS spectrum show a visualized distribution of silicon. X-ray photoelectron spectroscopy (XPS) indicates that a portion of silica is formed in the diffusion process of silicon atoms. Ferroelectric and weak ferromagnetic properties of the BFO films are degraded due to the diffusion of silicon atoms. The saturation magnetization decreases from 6.11 down to 0.75 emu/g, and the leakage current density increases from 3.8 × 10-4 up to 7.1 × 10-4 A/cm-2.
|
Received: 02 December 2013
Revised: 31 December 2013
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
68.35.Fx
|
(Diffusion; interface formation)
|
|
82.80.Yc
|
(Rutherford backscattering (RBS), and other methods ofchemical analysis)
|
|
Fund: Project supported by the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2011DFR50580) and the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11350110206). |
Corresponding Authors:
Huang Zhi-Hong, Fu De-Jun
E-mail: hzh19790109@126.com;djfu@whu.edu.cn
|
About author: 75.50.Gg; 77.80.-e; 68.35.Fx; 82.80.Yc |
Cite this article:
Xiao Ren-Zheng (肖仁政), Zhang Zao-Di (张早娣), Vasiliy O. Pelenovich, Wang Ze-Song (王泽松), Zhang Rui (张瑞), Li Hui (李慧), Liu Yong (刘雍), Huang Zhi-Hong (黄志宏), Fu De-Jun (付德君) Degradation of ferroelectric and weak ferromagnetic properties of BiFeO3 films due to the diffusion of silicon atoms 2014 Chin. Phys. B 23 077504
|
[1] |
Kubel F and Schmid H 1990 Acta Crystallogr. B 46 698
|
[2] |
Fruth V, Ramer R, Popa M, Calderon-Moreno J M, Anghel E M, Gartner M, Anastasescu M and Zaharescu M 2007 J. Mater. Sci.: Mater. Electron. 18 S187
|
[3] |
Zou J, Jiang J Z, Zhang Y X, Ma J N and Wan Q J 2012 Mater. Lett. 72 134
|
[4] |
Pabst G W, Martin L W, Chu Y H and Ramesh R 2007 Appl. Phys. Lett. 90 072902
|
[5] |
Yuan X Y, Luo L R, Wu D and Xu Q Y 2013 Chin. Phys. B 22 107702
|
[6] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[7] |
Fiebig M 2005 Phys. D: Appl. Phys. 38 R123
|
[8] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[9] |
Nan C W, Liu G and Lin Y H 2005 Phys. Rev. Lett. 94 197203
|
[10] |
Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
|
[11] |
Palkar V R, Ganesh Kumara K and Malik S K 2004 Appl. Phys. Lett. 84 2856
|
[12] |
Iakovlev S, Solterbeck C H, Kuhnke M and Es-Souni M 2005 J. Appl. Phys. 97 094901
|
[13] |
Lee Y H, Wu J M, Chueh Y L and Chou L J 2005 Appl. Phys. Lett. 87 172901
|
[14] |
Lee D, Kim M G, Ryu S, Jang H M and Lee S G 2005 Appl. Phys. Lett. 86 222903
|
[15] |
Ederer C and Spaldin N A 2005 Phys. Rev. B 71 060401
|
[16] |
Lin Y H, Jiang Q H, Wang Y and Nan C W 2007 Appl. Phys. Lett. 90 172507
|
[17] |
Wang Y and Nan C W 2006 Appl. Phys. Lett. 89 052903
|
[18] |
Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113
|
[19] |
Lebeugle D, Colson D, Forget A and Viret M 2007 Appl. Phys. Lett. 91 022907
|
[20] |
Wang S Y, Qiu X, Gao J, Feng Y, Su W N, Zheng J X, Yu D S and Li D J 2011 Appl. Phys. Lett. 98 152902
|
[21] |
Huang A and Shannigrahi S R 2011 J. Alloy. Compd. 509 2054
|
[22] |
Kogut I and Record M C 2013 Intermetallics 32 184
|
[23] |
Kumar M, Yadav K L and Varma G D 2008 Mater. Lett. 62 1159
|
[24] |
Mirabella S, Salvador D D, Napolitani E, Bruno E and Priolo F 2013 J. Appl. Phys. 113 031101
|
[25] |
Kageshima H, Uematsu M and Shiraishi K 2001 Microelectron. Eng. 59 301
|
[26] |
Cros A, Saoudi R, Hewett C A, Lau S S and Hollinger G 1990 J. Appl. Phys. 67 1826
|
[27] |
Hedman J, Baer Y, Berndtsson A, Klasson M, Leonhardt G, Nilsson R, Nordling C 1972 J. Electron Spectrosc. Relat. Phenom. 1 101
|
[28] |
Finster J, Klinkenberg E D, Heeg J and Braun W 1990 Vacuum 41 1586
|
[29] |
Wang X L, Xiang J J, Wang W W, Zhang J, Han K, Yang H, Ma X L, Zhao C, Chen D P and Ye T C 2013 Appl. Phys. Lett. 102 041603
|
[30] |
Mocioiu O C, Popa M, Neacsu E I and Zaharescu M 2013 J. Non-Crystalline Solids 361 130
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|