Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077504    DOI: 10.1088/1674-1056/23/7/077504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Degradation of ferroelectric and weak ferromagnetic properties of BiFeO3 films due to the diffusion of silicon atoms

Xiao Ren-Zheng (肖仁政)a, Zhang Zao-Di (张早娣)a, Vasiliy O. Pelenovichb, Wang Ze-Song (王泽松)a, Zhang Rui (张瑞)a, Li Hui (李慧)a, Liu Yong (刘雍)a, Huang Zhi-Hong (黄志宏)a, Fu De-Jun (付德君)a
a Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
b Department of Physics and Technology, Huazhong Normal University, Wuhan 430070, China
Abstract  Crystalline BiFeO3 (BFO) films each with a crystal structure of a distorted rhombohedral perovskite are characterized by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The diffusion of silicon atoms from the substrate into the BiFeO3 film is detected by Rutherford backscattering spectrometry (RBS). The element analysis is performed by energy dispersive X-ray spectroscopy (EDS). Simulation results of RBS spectrum show a visualized distribution of silicon. X-ray photoelectron spectroscopy (XPS) indicates that a portion of silica is formed in the diffusion process of silicon atoms. Ferroelectric and weak ferromagnetic properties of the BFO films are degraded due to the diffusion of silicon atoms. The saturation magnetization decreases from 6.11 down to 0.75 emu/g, and the leakage current density increases from 3.8 × 10-4 up to 7.1 × 10-4 A/cm-2.
Keywords:  ferroelectric      ferromagnetic      diffusion      silicon  
Received:  02 December 2013      Revised:  31 December 2013      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  68.35.Fx (Diffusion; interface formation)  
  82.80.Yc (Rutherford backscattering (RBS), and other methods ofchemical analysis)  
Fund: Project supported by the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2011DFR50580) and the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11350110206).
Corresponding Authors:  Huang Zhi-Hong, Fu De-Jun     E-mail:  hzh19790109@126.com;djfu@whu.edu.cn
About author:  75.50.Gg; 77.80.-e; 68.35.Fx; 82.80.Yc

Cite this article: 

Xiao Ren-Zheng (肖仁政), Zhang Zao-Di (张早娣), Vasiliy O. Pelenovich, Wang Ze-Song (王泽松), Zhang Rui (张瑞), Li Hui (李慧), Liu Yong (刘雍), Huang Zhi-Hong (黄志宏), Fu De-Jun (付德君) Degradation of ferroelectric and weak ferromagnetic properties of BiFeO3 films due to the diffusion of silicon atoms 2014 Chin. Phys. B 23 077504

[1] Kubel F and Schmid H 1990 Acta Crystallogr. B 46 698
[2] Fruth V, Ramer R, Popa M, Calderon-Moreno J M, Anghel E M, Gartner M, Anastasescu M and Zaharescu M 2007 J. Mater. Sci.: Mater. Electron. 18 S187
[3] Zou J, Jiang J Z, Zhang Y X, Ma J N and Wan Q J 2012 Mater. Lett. 72 134
[4] Pabst G W, Martin L W, Chu Y H and Ramesh R 2007 Appl. Phys. Lett. 90 072902
[5] Yuan X Y, Luo L R, Wu D and Xu Q Y 2013 Chin. Phys. B 22 107702
[6] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[7] Fiebig M 2005 Phys. D: Appl. Phys. 38 R123
[8] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[9] Nan C W, Liu G and Lin Y H 2005 Phys. Rev. Lett. 94 197203
[10] Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[11] Palkar V R, Ganesh Kumara K and Malik S K 2004 Appl. Phys. Lett. 84 2856
[12] Iakovlev S, Solterbeck C H, Kuhnke M and Es-Souni M 2005 J. Appl. Phys. 97 094901
[13] Lee Y H, Wu J M, Chueh Y L and Chou L J 2005 Appl. Phys. Lett. 87 172901
[14] Lee D, Kim M G, Ryu S, Jang H M and Lee S G 2005 Appl. Phys. Lett. 86 222903
[15] Ederer C and Spaldin N A 2005 Phys. Rev. B 71 060401
[16] Lin Y H, Jiang Q H, Wang Y and Nan C W 2007 Appl. Phys. Lett. 90 172507
[17] Wang Y and Nan C W 2006 Appl. Phys. Lett. 89 052903
[18] Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113
[19] Lebeugle D, Colson D, Forget A and Viret M 2007 Appl. Phys. Lett. 91 022907
[20] Wang S Y, Qiu X, Gao J, Feng Y, Su W N, Zheng J X, Yu D S and Li D J 2011 Appl. Phys. Lett. 98 152902
[21] Huang A and Shannigrahi S R 2011 J. Alloy. Compd. 509 2054
[22] Kogut I and Record M C 2013 Intermetallics 32 184
[23] Kumar M, Yadav K L and Varma G D 2008 Mater. Lett. 62 1159
[24] Mirabella S, Salvador D D, Napolitani E, Bruno E and Priolo F 2013 J. Appl. Phys. 113 031101
[25] Kageshima H, Uematsu M and Shiraishi K 2001 Microelectron. Eng. 59 301
[26] Cros A, Saoudi R, Hewett C A, Lau S S and Hollinger G 1990 J. Appl. Phys. 67 1826
[27] Hedman J, Baer Y, Berndtsson A, Klasson M, Leonhardt G, Nilsson R, Nordling C 1972 J. Electron Spectrosc. Relat. Phenom. 1 101
[28] Finster J, Klinkenberg E D, Heeg J and Braun W 1990 Vacuum 41 1586
[29] Wang X L, Xiang J J, Wang W W, Zhang J, Han K, Yang H, Ma X L, Zhao C, Chen D P and Ye T C 2013 Appl. Phys. Lett. 102 041603
[30] Mocioiu O C, Popa M, Neacsu E I and Zaharescu M 2013 J. Non-Crystalline Solids 361 130
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[7] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[8] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[9] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[12] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[13] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[14] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[15] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
No Suggested Reading articles found!