CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds |
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) |
National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiangsu Province, Nanjing University, Nanjing 210093, China |
|
|
Abstract In this letter, we investigate the magnetic and ferroelectric properties of polycrystalline MnW1-xMoxO4 (x = 0, 0.05, 0.10, 0.20) compounds. The substitution of nonmagnetic Mo6+ ions for W6+ ions modifies the magnetic transition temperatures of MnW1-xMoxO4 by changing the Mn-O-Mn bond. As a result, distinct ferroelectric properties and enhanced magnetoelectric effects are observed in Mo6+-doped MnWO4 compounds. The effects of substitution of Mo6+ ions on magnetic properties and magnetoelectric coupling are discussed.
|
Received: 17 December 2013
Revised: 24 January 2014
Accepted manuscript online:
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB932304 and 2009CB929501) and the National Natural Science Foundation of China (Grant Nos. 11174130 and U1232210). |
Corresponding Authors:
Wang Dun-Hui
E-mail: wangdh@nju.edu.cn
|
About author: 75.47.Lx; 77.80.-e; 75.85.+t |
Cite this article:
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds 2014 Chin. Phys. B 23 077502
|
[1] |
Scott J F 2007 Science 315 954
|
[2] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[3] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[4] |
Béa H, Gajek M, Bibes M and Barthélémy A 2008 J. Phys.: Condens. Matter 20 434221
|
[5] |
Khomskii D 2009 Physics 2 20
|
[6] |
Tokura Y and Seki S 2010 Adv. Mater. 22 1554
|
[7] |
Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
|
[8] |
Mostovoy M 2006 Phys. Rev. Lett. 96 067601
|
[9] |
Sergienko I A, Sen C and Dagotto E 2006 Phys. Rev. Lett. 97 227204
|
[10] |
Picozzi S, Yamauchi K, Sanyal B, Sergienko I A and Dagotto E 2007 Phys. Rev. Lett. 99 227201
|
[11] |
Liu R D, Liu Y T, Chen D F, He L H, Yan L Q, Wang Z C, Sun Y and Wang F W 2013 Chin. Phys. B 22 027507
|
[12] |
Hayashi K, Fukatsu R, Nozaki T, Miyazaki Y and Kajitani T 2013 Phys. Rev. B 87 064418
|
[13] |
Magesh J, Murugavel P, Mangalam R V K, Singh K, Simon C and Prellier W 2012 Appl. Phys. Lett. 101 022902
|
[14] |
Chaudhury R P, Lorenz B, Wang Y Q, Sun Y Y and Chu C W 2008 J. Appl. Phys. 103 07E312
|
[15] |
Liang K C, Wang Y Q, Sun Y Y, Lorenz B, Ye F, Fernandez-Baca J A, Mook H A and Chu C W 2012 New J. Phys. 14 073028
|
[16] |
Yan L Q, Lee B, Chun S H, Kim I, Chung J H, Kim S B, Park J Y, Lee S H, Chai Y S and Kim K H 2013 J. Phys. Soc. Jpn. 82 094708
|
[17] |
Meddar L, Josse M, Maglione M, Guiet A, La C, Deniard P, Decourt R, Lee C, Tian C, Jobic S, Whangbo M H and Payen C 2012 Chem. Mater. 24 353
|
[18] |
Song Y S, Yan L Q, Lee B, Chun S H, Kim K H, Kim S B, Nogami A, Katsufuji T, Schefer J and Chung J H 2010 Phys. Rev. B 82 214418
|
[19] |
Chaudhury R P, Yen F, dela Cruz C R, Lorenz B, Wang Y Q, Sun Y Y and Chu C W 2008 Physica B 403 1428
|
[20] |
Arkenbout A H, Palstra T T M, Siegrist T and Kimura T 2006 Phys. Rev. B 74 184431
|
[21] |
Chaudhury R P, Lorenz B, Wang Y Q, Sun Y Y, Chu C W, Ye F, Fernandez-Baca J, Mook H and Lynn J 2009 J. Appl. Phys. 105 07D913
|
[22] |
Liang K C, Chaudhury R P, Wang Y Q, Sun Y Y, Lorenz B and Chu C W 2012 J. Appl. Phys. 111 07D903
|
[23] |
Chaudhury R P, Lorenz B, Wang Y Q, Sun Y Y and Chu C W 2008 Phys. Rev. B 77 104406
|
[24] |
Chaudhury R P, Ye F, Fernandez-Baca J A, Lorenz B, Wang Y Q, Sun Y Y, Mook H A and Chu C W 2011 Phys. Rev. B 83 014401
|
[25] |
Yu H W, Liu M F, Li X, Li L, Lin L, Yan Z B and Liu J M 2013 Phys. Rev. B 87 104404
|
[26] |
Song Y S, Chung J H, Park J M S and Choi Y N 2009 Phys. Rev. B 79 224415
|
[27] |
Marrero-Lopez D, Canales-Vazquez J, Ruiz-Morales J C, Irvine J T S and Nunez P 2005 Electrochim. Acta 50 4385
|
[28] |
Fang S S, Xiao X, Lei X, Li W H and Dong Y D 2003 J. Non-Cryst. Solids 321 120
|
[29] |
Etourneau J, Portier J and Ménil F 1992 J. Alloys Compd. 188 1
|
[30] |
Gauthier G, Jobic S, Boucher F, Macaudi'ere P, Huguenin D, Rouxel J and Brec R 1998 Chem. Mater. 10 2341
|
[31] |
Taniguchi K, Abe N, Ohtani S and Arima T 2009 Phys. Rev. Lett. 102 147201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|