ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
All optical method for measuring the carrier envelope phase from half-cycle cutoffs |
Li Qian-Guang (李钱光)a b, Chen Huan (陈欢)a, Zhang Xiu (张秀)a, Yi Xu-Nong (易煦农)a |
a School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China;
b Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China |
|
|
Abstract An all optical method is demonstrated for measuring the carrier-envelope phase (CEP) of few-cycle laser pulses. It is found that, in the few-cycle regime, the high harmonic spectrum generated from asymmetric molecules shows several half-cycle cutoffs that change their positions as the CEP varies. Such half-cycle cutoffs represent the fingerprint of different quantum trajectories and the waveform of the driving pulse. In this case, the CEP can be accurately measured from the half-cycle cutoffs.
|
Received: 08 September 2013
Revised: 28 November 2013
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the Key Foundation of the Ministry of Education of China (Grant No. 211117) and the Foundation of Hubei Co-innovation Center for Utilization of Biomass Waste, China (Grant No. XTCX004). |
Corresponding Authors:
Li Qian-Guang
E-mail: liqianguang@126.com
|
About author: 42.65.Ky; 42.65.Re; 42.65.-k |
Cite this article:
Li Qian-Guang (李钱光), Chen Huan (陈欢), Zhang Xiu (张秀), Yi Xu-Nong (易煦农) All optical method for measuring the carrier envelope phase from half-cycle cutoffs 2014 Chin. Phys. B 23 074206
|
[1] |
Baltuska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 611
|
[2] |
Li C, Wang D, Song L W, Liu J, Liu P, Xu C H, Leng Y X, Li R X, and Xu Z Z 2011 Opt. Express 19 6783
|
[3] |
Zhu J F, Wang P, Han H N, Teng Hao, and Wei Z Y 2008 Science in China G: Physics, Mechanics and Astronomy 51 507
|
[4] |
Cao W, Lu P X, Lan P F, Wang X L and Li Y H 2007 Phys. Rev. A 75 063423
|
[5] |
Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203
|
[6] |
Peng L Y, Tan F, Gong Q H, Pronin E A and Starace A F 2009 Phys. Rev. A 80 013407
|
[7] |
Zhang X M, Zhang J T, Gong Q H and Xu Z Z 2009 Chin. Phys. B 18 1014
|
[8] |
Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K, Lezius M, Krausz F, Lindner F, Schatzel M, Paulus G and Walther H 2004 Phys. Rev. Lett. 93 263001
|
[9] |
Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
|
[10] |
Lan P F, Lu P X, Cao W and Wang X L 2005 Phys. Rev. E 72 066501
|
[11] |
Mackenroth, Piazza A D and Keitel C H 2010 Phys. Rev. Lett. 105 063903
|
[12] |
Wen M, Jin L L, Wang H Y, Wang Z, Shen B F, Lu Y R, Chen J E and Yan X Q 2012 Phys. Rev. E 85 035401(R)
|
[13] |
Zhai Z, Peng D, Zhao X, Guo F M, Yang Y J, Fu P M, Chen J, Yan Z C and Wang B B 2012 Phys. Rev. A 86 043432
|
[14] |
Lan P F, Lu P X and Cao W 2006 Phys. Plasmas 13 013106
|
[15] |
Holzwarth R, Udem Th, Hänsch T W, Knight J C, Wadsworth W J and Russell P St J 2000 Phys. Rev. Lett. 85 2264
|
[16] |
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
|
[17] |
Zhang C M, Wang J L, Wei P F, Song L W, Li C, Kim C J and Leng Y X 2009 Chin. Phys. B 18 1469
|
[18] |
Liao Q, Lu P X, Zhang Q B, Hong W Y and Yang Z Y 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125601
|
[19] |
Wittmann T, Horvath B, Helml W, Schäzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nature Phys. 5 357
|
[20] |
Liu Z T, Yuan K J, Shu C C, Hu W H and Cong H L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601
|
[21] |
Rathje T, Johnson N G, Moller M, Submann F, Adolph D, Kubel M, Kienberger R, Kling M F, Paulus G G and Sayler A M 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074003
|
[22] |
Xin G G, Ye D F and Liu J 2010 Phys. Rev. A 82 063423
|
[23] |
Hong W Y, Lu P X, Lan P F, Yang Z Y, Li Y H and Liao Q 2008 Phys. Rev. A 77 033410
|
[24] |
Nisoli M, Sansone G, Stagira S, De Silvestri S, Vozzi C, Pascolini M, Poletto L, Villoresi P and Tondello G 2003 Phys. Rev. Lett. 91 213905
|
[25] |
Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 011402
|
[26] |
Zeng Z N, Cheng Y, Song X H, Li R X and Xu Z Z 2007 Phys. Rev. Lett. 98 203901
|
[27] |
Lan P F, Lu P X, Li F, Li Y H and Yang Z Y 2008 Opt. Express 16 5868
|
[28] |
Ge Y C and He H P 2010 Chin. Phys. B 19 103302
|
[29] |
Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 051801
|
[30] |
Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, De Silvestri D and Nisoli 2004 Phys. Rev. Lett. 92 113904
|
[31] |
Zhang Q B, Lu P X, Lan P F, Hong W Y and Yang Z Y 2008 Opt. Express 16 9795
|
[32] |
Hong W Y, Lu P X, Li Q G and Zhang Q B 2009 Opt. Lett. 34 2102
|
[33] |
Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P and Tisch J W G 2007 Nature Physics 3 52
|
[34] |
Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 021801
|
[35] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
|
[36] |
Zhu X S, Zhang Q B, Hong W Y, Lan P F and Lu P X 2011 Opt. Express 19 436
|
[37] |
Kamta G L, Bandrauk A D and Corkum P B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L339
|
[38] |
Lan P F, Lu P X, Cao W, Wang X L and Hong W L 2007 Opt. Lett. 32 1186
|
[39] |
Zhao Z Y, Han Y C, Huang Y and Cong S L 2013 J. Chem. Phys. 139 044305
|
[40] |
Wu J and Zeng H P 2010 Phys. Rev. A 81 053401
|
[41] |
Lan P F, Lu P X, Cao W, Wang X L and Yang G 2006 Phys. Rev. A 74 063411
|
[42] |
Hong W Y, Li Y H, Lu P X, Lan P F, Zhang Q B and Wang X B 2008 J. Opt. Soc. Am. B 25 1684
|
[43] |
Javanainen J, Eberly J H, and Su Q C 1988 Phys. Rev. A 38 3430
|
[44] |
Lan P F, Lu P X, Cao W, Wang X L and Yang G 2006 Phys. Rev. A 74 063411
|
[45] |
Ben-Itzhak I, Gertner I, Heber O and Rosner B 1993 Phys. Rev. Lett. 71 1347
|
[46] |
Lan P F, Lu P X, Li F, Li Q G, Hong W Y, Zhang Q B, Yang Z Y and Wang X B 2008 Opt. Express 16 17542
|
[47] |
Feit M D, Fleck Jr J A and Steiger A 1982 J. Comput. Phys. 47 412
|
[48] |
Zhang Q, Lan P, Hong W, Liao Q, Yang Z and Lu P 2009 Acta Phys. Sin. 58 4908 (in Chinese)
|
[49] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[50] |
Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X and Xu Z Z 2013 Phys. Rev. Lett. 110 233903
|
[51] |
Levesque J, Zeidler D, Marangos J P, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 183903
|
[52] |
Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B and Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|