|
|
Ground state of rotating ultracold quantum gases with anisotropic spin–orbit coupling and concentrically coupled annular potential |
Wang Xin (王鑫)a b, Tan Ren-Bing (谭仁兵)c, Du Zhi-Jing (杜志静)a, Zhao Wen-Yu (赵文宇)a b, Zhang Xiao-Fei (张晓斐)a, Zhang Shou-Gang (张首刚)a |
a Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; b University of Chinese Academy of Sciences, Beijing 100049, China; c Department of Physics, School of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China |
|
|
Abstract Motivated by recent experimental realization of synthetic spin-orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose-Einstein condensates with anisotropic Rashba spin-orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin-orbit coupling and rotational frequency. Moreover, the phase transitions between different ground state phases induced by the anisotropic spin-orbit coupling are obviously different from the isotropic one.
|
Received: 16 December 2013
Revised: 11 January 2014
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
05.30.Jp
|
(Boson systems)
|
|
67.85.Fg
|
(Multicomponent condensates; spinor condensates)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104064, 11303030, and 11174282), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61025023), the National Major Fund of Scientific Equipment and Instrument Development, China (Grant No. 61127901), the Key Project Fund of the Chinese Academy of Sciences for the "Western Light" Talent Cultivation Plan, and the Science and Technology Project of Shaanxi Province, China (Grant No. 2013KJXX-03). |
Corresponding Authors:
Zhang Xiao-Fei
E-mail: xfzhang@ntsc.ac.cn
|
About author: 03.75.Mn; 05.30.Jp; 67.85.Fg |
Cite this article:
Wang Xin (王鑫), Tan Ren-Bing (谭仁兵), Du Zhi-Jing (杜志静), Zhao Wen-Yu (赵文宇), Zhang Xiao-Fei (张晓斐), Zhang Shou-Gang (张首刚) Ground state of rotating ultracold quantum gases with anisotropic spin–orbit coupling and concentrically coupled annular potential 2014 Chin. Phys. B 23 070308
|
[1] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Qi X L and Zhang S C 2010 Phys. Today 63 33
|
[4] |
Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
|
[5] |
Lin Y J, Compton R L, Jimnez-Garca K, Porto J V and Spielman I B 2009 Nature 462 628
|
[6] |
Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
|
[7] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[8] |
Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
|
[9] |
Stanescu T D, Zhang C and Galitski V 2007 Phys. Rev. Lett. 99 110403
|
[10] |
Campbell D L, Juzeliunas G and Spielman I B 2011 Phys. Rev. A 84 025602
|
[11] |
Chapman M and Sá de Melo C 2011 Nature 471 41
|
[12] |
Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
|
[13] |
Li Z D, Yao S F and Li Q Y 2011 Chin. Phys. B 20 110307
|
[14] |
Wu C J, Ian M S and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[15] |
Wu C and Zhang S C 2004 Phys. Rev. Lett. 93 036403
|
[16] |
Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
|
[17] |
Xu X Q and Han J H 2011 Phys. Rev. Lett. 107 200401
|
[18] |
Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
|
[19] |
Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
|
[20] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[21] |
Liao R, Yu Y X and Liu W M 2012 Phys. Rev. Lett. 108 080406
|
[22] |
Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301
|
[23] |
Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
|
[24] |
Zhou X F, Zhou J and Wu C 2011 Phys. Rev. A 84 063624
|
[25] |
Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
|
[26] |
Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
|
[27] |
Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
|
[28] |
Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
|
[29] |
Hu H and Liu X J 2012 Phys. Rev. A 85 013619
|
[30] |
Ozawa T and Baym G 2012 Phys. Rev. A 85 063623
|
[31] |
Zhou L, Pu H and Zhang W P 2013 Phys. Rev. A 87 023625
|
[32] |
Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
|
[33] |
Zezyulin D A, Driben R, Konotop V V and Malomed B A 2013 Phys. Rev. A 88 013607
|
[34] |
Zhang X F, Dong R F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
|
[35] |
Zhang X F, Gao R S, Wang X, Dong R F, Liu T and Zhang S G 2013 Phys. Lett. A 377 1109
|
[36] |
Zhang X F, Li B and Zhang S G 2013 Laser Phys. 23 105501
|
[37] |
Brand J, Haigh T J and Zülicke U 2009 Phys. Rev. A 80 011602
|
[38] |
Smyrnakis J, Bargi S, Kavoulakis G M, Magiropoulos M, Kärkkäinen K and Reimann S M 2009 Phys. Rev. Lett. 103 100404
|
[39] |
Malet F, Kavoulakis G M and Reimann S M 2010 Phys. Rev. A 81 013630
|
[40] |
Bao W Z and Tang W J 2003 J. Comput. Phys. 187 230
|
[41] |
Bao W Z and Shen J 2004 SIAM J. Sci. Comput. 25 1674
|
[42] |
Merhasin I, Malomed B A and Driben R 2005 J. Phys. B 38 877
|
[43] |
Wen L, Liu W M, Cai Y, Zhang J M and Hu J 2012 Phys. Rev. A 85 043602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|