CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Switching and Fano resonance via exciton-plasmon interaction |
Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群) |
Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, China |
|
|
Abstract We further study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.
|
Received: 26 July 2013
Revised: 09 December 2013
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Hc
|
(Quantum dots)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174372). |
Corresponding Authors:
Li Jian-Bo
E-mail: jbli_opt@126.com
|
Cite this article:
Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群) Switching and Fano resonance via exciton-plasmon interaction 2014 Chin. Phys. B 23 067302
|
[1] |
Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
|
[2] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[3] |
Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
|
[4] |
Fedutik Y, Temnov V V, Schops O, Woggon U and Artemyev M V 2007 Phys. Rev. Lett. 99 136802
|
[5] |
Sadeghi S M, West R G and Nejat A 2011 Nanotechnology 22 405202
|
[6] |
Gu Y, Huang L, Martin O J F and Gong Q H 2010 Phys. Rev. B 81 193103
|
[7] |
Govorov A O, Lee J and Kotov N A 2007 Phys. Rev. B 76 125308
|
[8] |
Zhou Z K, Li M, Yang Z J, Peng X N, Su X R, Zhang Z S, Li J B, Kim N C, Yu X F, Zhou L, Hao Z H and Wang Q Q 2010 ACS Nano 4 5003
|
[9] |
Govorov A O, Bryant G W, Zhang W, Skeini T, Lee J, Kotov N A, Slocik J M and Naik R R 2006 Nano Lett. 6 984
|
[10] |
Malyshev A V and Malyshev V A 2011 Phys. Rev. B 84 035314
|
[11] |
Li J B, Kim N C, Cheng M T, Zhou L, Hao Z H and Wang Q Q 2012 Opt. Express 20 1856
|
[12] |
Sadeghi S M, Deng L, Li X and Huang W P 2009 Nanotechnology 20 365401
|
[13] |
Xiao Z H, Zheng L and Lin H Z 2012 Opt. Express 20 1219
|
[14] |
Liu S D, Cheng M T, Yang Z J and Wang Q Q 2008 Opt. Lett. 33 851
|
[15] |
Sadeghi S M 2010 Nanotechnology 21 355501
|
[16] |
Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
|
[17] |
Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
|
[18] |
Hatef A, Sadeghi S M, Boulais É and Meunier M 2013 Nanotechnology 24 015502
|
[19] |
Pacifici D, Lezec H J and Atwater H A 2007 Nat. Photon. 1 402
|
[20] |
Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903
|
[21] |
Cheng M T 2011 Acta Phys. Sin. 60 117301 (in Chinese)
|
[22] |
Cheng M T 2012 Opt. Commun. 285 804
|
[23] |
Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310
|
[24] |
Chen W, Chen G Y and Chen Y N 2010 Opt. Express 18 10360
|
[25] |
Chen W, Chen G Y and Chen Y N 2011 Opt. Lett. 36 3602
|
[26] |
Chen G Y and Chen Y N 2012 Opt. Lett. 37 4023
|
[27] |
Cheng M T and Song Y Y 2012 Opt. Lett. 37 978
|
[28] |
Shen J T and Fan S 2005 Opt. Lett. 30 2001
|
[29] |
Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
|
[30] |
Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
|
[31] |
Li J B, Cheng M T, Yang Z J and Hao Z H 2009 Chin. Phys. Lett. 26 113202
|
[32] |
Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832
|
[33] |
Gu L M 2012 Chin. Phys. Lett. 29 104206
|
[34] |
Xiao X F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|