Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067302    DOI: 10.1088/1674-1056/23/6/067302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Switching and Fano resonance via exciton-plasmon interaction

Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群)
Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, China
Abstract  We further study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.
Keywords:  surface plasmon      quantum dots      quantum computation      optical waveguides and couplers  
Received:  26 July 2013      Revised:  09 December 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Hc (Quantum dots)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174372).
Corresponding Authors:  Li Jian-Bo     E-mail:  jbli_opt@126.com

Cite this article: 

Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群) Switching and Fano resonance via exciton-plasmon interaction 2014 Chin. Phys. B 23 067302

[1] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[2] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[3] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[4] Fedutik Y, Temnov V V, Schops O, Woggon U and Artemyev M V 2007 Phys. Rev. Lett. 99 136802
[5] Sadeghi S M, West R G and Nejat A 2011 Nanotechnology 22 405202
[6] Gu Y, Huang L, Martin O J F and Gong Q H 2010 Phys. Rev. B 81 193103
[7] Govorov A O, Lee J and Kotov N A 2007 Phys. Rev. B 76 125308
[8] Zhou Z K, Li M, Yang Z J, Peng X N, Su X R, Zhang Z S, Li J B, Kim N C, Yu X F, Zhou L, Hao Z H and Wang Q Q 2010 ACS Nano 4 5003
[9] Govorov A O, Bryant G W, Zhang W, Skeini T, Lee J, Kotov N A, Slocik J M and Naik R R 2006 Nano Lett. 6 984
[10] Malyshev A V and Malyshev V A 2011 Phys. Rev. B 84 035314
[11] Li J B, Kim N C, Cheng M T, Zhou L, Hao Z H and Wang Q Q 2012 Opt. Express 20 1856
[12] Sadeghi S M, Deng L, Li X and Huang W P 2009 Nanotechnology 20 365401
[13] Xiao Z H, Zheng L and Lin H Z 2012 Opt. Express 20 1219
[14] Liu S D, Cheng M T, Yang Z J and Wang Q Q 2008 Opt. Lett. 33 851
[15] Sadeghi S M 2010 Nanotechnology 21 355501
[16] Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
[17] Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[18] Hatef A, Sadeghi S M, Boulais É and Meunier M 2013 Nanotechnology 24 015502
[19] Pacifici D, Lezec H J and Atwater H A 2007 Nat. Photon. 1 402
[20] Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903
[21] Cheng M T 2011 Acta Phys. Sin. 60 117301 (in Chinese)
[22] Cheng M T 2012 Opt. Commun. 285 804
[23] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310
[24] Chen W, Chen G Y and Chen Y N 2010 Opt. Express 18 10360
[25] Chen W, Chen G Y and Chen Y N 2011 Opt. Lett. 36 3602
[26] Chen G Y and Chen Y N 2012 Opt. Lett. 37 4023
[27] Cheng M T and Song Y Y 2012 Opt. Lett. 37 978
[28] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[29] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
[30] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[31] Li J B, Cheng M T, Yang Z J and Hao Z H 2009 Chin. Phys. Lett. 26 113202
[32] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832
[33] Gu L M 2012 Chin. Phys. Lett. 29 104206
[34] Xiao X F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[10] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
No Suggested Reading articles found!