|
|
Electrically tunable resonant terahertz transmission in subwavelength hole arrays |
Zhang Ying (张莹)a b, Liu Ying-Kai (刘应开)a, Han Jia-Guang (韩家广)b |
a School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China; b Center for Terahertz Wave, Key Laboratory of Opto-electronic Information Technology, Ministry of Education, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract An actively enhanced resonant transmission in a plasmonic array of subwavelength holes is demonstrated by use of terahertz time-domain spectroscopy. By connecting this two-dimensional element into an electrical circuit, tunable resonance enhancement is observed in arrays made from good and relatively poor metals. The tunable feature is attributed to the nonlinear electric response of the periodic hole array film, which is confirmed by its voltage-current behavior. This finding could lead to a unique route to active plasmonic devices, such as tunable filters, spatial modulators, and integrated terahertz optoelectronic components.
|
Received: 20 November 2013
Revised: 25 January 2014
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61007034). |
Corresponding Authors:
Liu Ying-Kai, Han Jia-Guang
E-mail: liuyingkai99@163.com;jiaghan@tju.edu.cn
|
Cite this article:
Zhang Ying (张莹), Liu Ying-Kai (刘应开), Han Jia-Guang (韩家广) Electrically tunable resonant terahertz transmission in subwavelength hole arrays 2014 Chin. Phys. B 23 067301
|
[1] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[2] |
Gordon R, Hughes M, Leathem B, Kavanagh K L and Brolo A G 2005 Nano Lett. 5 1243
|
[3] |
Molen K, Koerkamp K, Enoch S, Segerink F, Hulst N and Kuipers L 2005 Phys. Rev. B 72 045421
|
[4] |
Martín-Moreno L, García-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
|
[5] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[6] |
Ozbay E 2006 Science 311 189
|
[7] |
Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag) p. 40
|
[8] |
Chen H, Sun Y and Wang L 2009 Chin. Phys. B 18 4287
|
[9] |
Sun M, Liu R, Li Z, Cheng B, Zhang D, Yang H and Jin A 2006 Chin. Phys. 15 1591
|
[10] |
Yang P, Gu Y and Gong Q 2008 Chin. Phys. B 17 3880
|
[11] |
Pan C L, Hsieh C F, Pan R P, Tanaka M, Miyamaru F, Tani M and Hangyo M 2005 Opt. Express 13 3921
|
[12] |
Zhang W, Azad A K, Han J, Xu J, Chen J and Zhang X C 2007 Phys. Rev. Lett. 98 183901
|
[13] |
Qu D, Grischkowsky D and Zhang W 2004 Opt. Lett. 29 896
|
[14] |
Qu D and Grischkowsky D 2004 Phys. Rev. Lett. 93 196804
|
[15] |
Torosyan G, Rau C, Pradarutti B and Beigang R 2004 Appl. Phys. Lett. 85 3372
|
[16] |
O'Hara J, Averitt R D and Taylor A J 2004 Opt. Express 12 6397
|
[17] |
Saxler J, Rivas J G, Janke C, Pellemans H P M, Bolver P H and Kurz H 2004 Phys. Rev. B 69 155427
|
[18] |
Cao H and Nahata A 2004 Opt. Express 12 1004
|
[19] |
Lee J W, Seo M A, Park D J, Kim D S, Jeoung S C, Lienau C, Park Q H and Planken P C M 2006 Opt. Express 14 1253
|
[20] |
Masson J B and Gallot G 2006 Phys. Rev. B 73 121401
|
[21] |
Grischkowsky D, Keiding S, Van Exter M and Fattinger Ch 1990 J. Opt. Soc. Am. B 7 2006
|
[22] |
Hamon B V 1952 Proc. IEE 99 151
|
[23] |
Azad A K, Zhao Y, Zhang W and He M 2006 Opt. Lett. 31 2637
|
[24] |
Gefen Y, Shih W H, Laibowitz R B and Viggiano J M 1986 Phys. Rev. Lett. 57 3097
|
[25] |
Chakrabarty R K, Bardhan K K and Basu A 1991 Phys. Rev. B 44 6773
|
[26] |
Ghaemi H F, Thio T, Grupp D E, Ebbesen T W and Lezec H J 1998 Phys. Rev. B 58 6779
|
[27] |
Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
|
[28] |
Han J G, Azad A K, Gong M F, Lu X C and Zhang W 2007 Appl. Phys. Lett. 91 071122
|
[29] |
Shaner E A, Cederberg J G and Wasserman D 2007 Appl. Phys. Lett. 91 181110
|
[30] |
Rivas J G, Janke C, Bolivar P H and Kurz H 2005 Opt. Express 13 847
|
[31] |
Zhigalskii G P and Jones B K 2003 The Physical Properties of Thin Metal Films (New York: Taylor & Francis Inc.)
|
[32] |
Birey H 1978 J. Appl. Phys. 49 2898
|
[33] |
Khor'kov S V 2005 Tech. Phys. Lett. 31 555
|
[34] |
Satanin A M, Skuzovatkin V V and Khor'kov S V 1997 JETP 85 351
|
[35] |
Thio T, Ghaemi H F, Lezec H J, Wolff P A and Ebbesen T W 1999 J. Opt. Soc. Am. B 16 1743
|
[36] |
Grupp D E, Lezec H J, Ebbesen T W, Pellerin K M and Thio T 2000 Appl. Phys. Lett. 77 1569
|
[37] |
Azad A K and Zhang W 2005 Opt. Lett. 30 2945
|
[38] |
Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
|
[39] |
Wang Y, Russell S D and Shimabukuro R L 2005 J. Appl. Phys. 97 023708
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|