Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067303    DOI: 10.1088/1674-1056/23/6/067303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks

Liu Xiu-Ying (刘秀英)a, He Jie (何杰)a, Yu Jing-Xin (于景新)a, Li Zheng-Xin (栗正新)b, Fan Zhi-Qin (樊志琴)a
a College of Science, Henan University of Technology, Zhengzhou 450000, China;
b School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450000, China
Abstract  Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 Å, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. The GCMC simulated results show that HHTP-DPB COF has the best performance for hydrogen storage, followed by BTP-COF, TP-COF, COF-18 Å, and PPy-COF. However, their adsorption amounts at room temperature are all too low to meet the uptake target set by US Department of Energy (US-DOE) and enable practical applications. The effects of pore size, surface area, and isosteric heat of hydrogen on adsorption amount are considered, which indicate that these three factors are all the important factors for determining the H2 adsorption amount. The chemisorptions of spiltover hydrogen atoms on these five COFs represented by the cluster models are investigated using the DFT method. The saturation cluster models are constructed by considering all possible adsorption sites for these cluster models. The average binding energy of a hydrogen atom and the saturation hydrogen storage density are calculated. The large average binding energy indicates that the spillover process may proceed smoothly and reversibly. The saturation hydrogen storage density is much larger than the physisorption uptake of H2 molecules at 298 K and 100 bar (1 bar = 105 Pa), and is close to or exceeds the 2010 US-DOE target of 6 wt% for hydrogen storage. This suggests that the hydrogen storage capacities of these COFs by spillover may be significantly enhanced. Thus 2D COFs studied in this paper are suitable hydrogen storage media by spillover.
Keywords:  hydrogen spillover      covalent-organic frameworks      hydrogen storage      grand canonical Monte Carlo simulation  
Received:  22 September 2013      Revised:  18 December 2013      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  36.40.-c (Atomic and molecular clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247275 and 11304079), the Young Core Instructor of the Higher Education Institutions of Henan Province, the Special Foundation for Fostering Technologic Innovative Talents of Henan University of Technology, China (Grant No. 2012CXRC16), and the Natural Science Foundation of Education Bureau of Henan Province, China (Grant Nos. 2011B140005 and 13A140195).
Corresponding Authors:  Liu Xiu-Ying     E-mail:  liuxiuyingzx@126.com

Cite this article: 

Liu Xiu-Ying (刘秀英), He Jie (何杰), Yu Jing-Xin (于景新), Li Zheng-Xin (栗正新), Fan Zhi-Qin (樊志琴) Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks 2014 Chin. Phys. B 23 067303

[1] Satyapal S, Petrovic J, Read C, Thomas G and Ordaz G 2007 Cat. Today 120 246
[2] Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J and Yaghi O M 2005 Science 310 1166
[3] Hunt J R, Doonan C J, LeVangie J D, Côté A P and Yaghi O M 2008 J. Am. Chem. Soc. 130 11872
[4] Tilford R W, Mugavero III S J, Pellechia P J and Lavigne J J 2008 Adv. Mater. 20 2741
[5] Wan S, Guo J, Kim J, Ihee H and Jiang D 2008 Angew. Chem. 120 8958
[6] Spitler E L and Dichtel W R 2010 Nat. Chem. 2 672
[7] Spitler E, Colson J W, Uribe-Romo F J, Woll A R, Saldivar M R G A and Dichtel W R 2012 Angew. Chem. 124 1
[8] Klontzas E, Tylianakis E and Froudakis G E 2008 J. Phys. Chem. C 112 9095
[9] Furukawa H and Yaghi O M 2009 J. Am. Chem. Soc. 131 8875
[10] Assfour B and Seifert G 2010 Micropor. Mesopor. Mat. 133 59
[11] Wong-Foy A G, Matzger A J and Yaghi O M 2006 J. Am. Chem. Soc. 128 3494
[12] Lan J H, Cao D P and Wang W C 2010 J. Phys. Chem. C 114 3108
[13] Wu M M, Wang Q, Sun Q, Jena P and Kawazoe Y 2010 J. Chem. Phys. 133 154706
[14] Zou X L, Zhou G, Duan W H, Choi K and Ihm J 2010 J. Phys. Chem. C 114 13402
[15] Yang Z L and Cao D P 2012 J. Phys. Chem. C 116 12591
[16] Mendoza-Cortes J L, Han S and Goddard III W A 2012 J. Phys. Chem. A 116 1621
[17] Guo J H, Zhang H, Liu Z P and Cheng X L 2012 J. Phys. Chem. C 116 15908
[18] Suri M, Dornfeld M and Ganz E 2009 J. Chem. Phys. 131 174703-1
[19] Ganz E and Dornfeld M 2012 J. Phys. Chem. C 116 3661
[20] Li Y W and Yang R T 2008 AIChE 54 269
[21] Lachawiec A J Jr, Qi G and Yang R T 2005 Langmuir 21 11418
[22] Jiménez V, Ramírez-Lucas A, Sánchez P and Valverde J L 2012 Int. J. Hydrog. Energ. 37 4144
[23] Lachawiec A J Jr and Yang R T 2008 Langmuir 24 6159
[24] Li Y W and Yang R T 2006 J. Am. Chem. Soc. 128 8136
[25] Kim H S, Lee H, Han K S, Kim J H, Song M S, Park M S, Lee J Y and Kang J U 2005 J. Phys. Chem. B 109 8983
[26] Lee K, Kim Y H, Sun Y Y, West D, Zhao Y F, Chen Z F and Zhang S B 2010 Phys. Rev. Lett. 104 236101
[27] Wan S, Guo J, Kim J, Ihee H and Jiang D L 2009 Angew. Chem. Int. Ed. 48 5439
[28] Wan S, Guo J, Kim J, Ihee H and Jiang D L 2008 Angew. Chem. 120 8958
[29] Dogru M, Sonnauer A, Gavryushin A, Knochel P and Bein T 2011 Chem. Commun. 47 1707
[30] Tilford R W, Gemmill W R, zur Loye H and Lavigne J J 2006 Chem. Mater. 18 5296
[31] Spitler E L, Koo B T, Novotney J L, Colson J W, Uribe-Romo F J, Gutierrez G D, Clancy P and Dichte l W R 2011 J. Am. Chem. Soc. 133 19416
[32] Gupta A, Chempath S, Sanborn M J, Clark L A and Snurr R Q 2003 Mol. Simul. 29 29
[33] Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897
[34] Sarkisov L, Duren T and Snurr R Q 2004 Mol. Phys. 102 211
[35] Garberoglio G, Skoulidas A I and Johnson J K 2005 J. Phys. Chem. B 109 13094
[36] Duren T, Sarkisov L, Yaghi O M and Snurr R Q 2004 Langmuir 20 2683
[37] Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
[38] Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L and Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese)
[39] Snurr R Q, Bell A T and Theodorou D N 1993 J. Phys. Chem. 97 13742
[40] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift für Kristallographie 220 567
[41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[42] Kaye S S, Dailly A, Yaghi O M and Long J R 2007 J. Am. Chem. Soc. 129 14176
[43] Klontzas E, Tylianakis E and Froudakis G E 2008 J. Phys. Chem. C 112 9095
[44] Garberoglio G, Skoulidas A I and Johnson J K 2005 J. Phys. Chem. B 109 13094
[45] Llewellyn P L and Maurin G 2005 C. R. Chimie 8 283
[46] Psofogiannakis G and Froudakis G 2009 J. Phys. Chem. C 113 14908
[1] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[2] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[3] An overview of progress in Mg-based hydrogen storage films
Lyu Jinzhe, Andrey M Lider, Viktor N Kudiiarov. Chin. Phys. B, 2019, 28(9): 098801.
[4] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[5] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[6] Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks
Xiu-Ying Liu(刘秀英), Jing-Xin Yu(于景新), Xiao-Dong Li(李晓东), Gui-Cheng Liu(刘桂成), Xiao-Feng Li(李晓凤), Joong-Kee Lee. Chin. Phys. B, 2017, 26(2): 027302.
[7] Na decorated B6 cluster and its hydrogen storage properties
Ruan Wen (阮文), Wu Dong-Lan (伍冬兰), Luo Wen-Lang (罗文浪), Yu Xiao-Guang (余晓光), Xie An-Dong (谢安东). Chin. Phys. B, 2014, 23(2): 023102.
[8] First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes
Pan Hong-Zhe (潘洪哲), Wang Yong-Long (王永龙), He Kai-Hua (何开华), Wei Ming-Zhen (魏明真), Ouyang Yu (欧阳雨), Chen Li (陈丽). Chin. Phys. B, 2013, 22(6): 067101.
[9] Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations
M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. El Kenz, O. Mounkachi, E. K. Hlil. Chin. Phys. B, 2012, 21(9): 097501.
[10] High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study
Fan Jing (范靖), Bao Kuo (包括), Duan De-Fang (段德芳), Wang Lian-Cheng (汪连城), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2012, 21(8): 086104.
[11] Hydrogen storage capabilities of the most stable isomers of NanBm (m+n=6) clusters
Ruan Wen(阮文), Xie An-Dong(谢安东), Yu Xiao-Guang(余晓光), and Wu Dong-Lan(伍冬兰). Chin. Phys. B, 2011, 20(4): 043104.
[12] Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations
Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云). Chin. Phys. B, 2011, 20(1): 017102.
[13] Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation
Liu Xiu-Ying(刘秀英), Wang Chao-Yang(王朝阳), Tang Yong-Jian(唐永建), Sun Wei-Guo(孙卫国), and Wu Wei-Dong (吴卫东). Chin. Phys. B, 2010, 19(3): 036103.
[14] First-principles calculations of elasticity and thermodynamic properties of LaNi5 crystal under pressure
Chen Dong(陈东), Chen Jing-Dong(陈敬东), Zhao Li-Hua(赵丽华), Wang Chun-Lei(王春雷), Yu Ben-Hai(余本海), and Shi De-Heng(施德恒). Chin. Phys. B, 2009, 18(2): 738-743.
[15] Interaction of hydrogen molecules on Ni-doped single-walled carbon nanotube
Ni Mei-Yan(倪美燕), Wang Xian-Long(王贤龙), and Zeng Zhi(曾雉). Chin. Phys. B, 2009, 18(1): 357-362.
No Suggested Reading articles found!